Introduction to Intelligent Systems

Lecture 14

Prof. Songhwai Oh
ECE, SNU
REINFORCEMENT LEARNING
Reinforcement Learning

• Markov decision processes (MDPs)
 – Complete model is known

• Reinforcement learning
 – Use observed rewards to learn an optimal policy for the environment.
 – Complete model is not known.

• Three agent types:
 – **Utility-based**: an agent learns a utility function on states and uses it to select actions that maximize the expected outcome utility.
 – **Q-learning**: an agent learns an action-utility function (Q-function) giving the expected utility of taking a given action in a given state.
 – **Reflex agent**: learns a policy that maps directly from states to actions.
Passive Reinforcement Learning

- Fully observable environment
- Agent’s policy π is fixed (i.e., the agent always executes $\pi(s)$ at s).
- Goal: to learn how good the policy is, i.e., to learn the utility function $U^\pi(s)$.
- Similar to policy evaluation (a step in policy iteration)
 - Differences: Transition model and reward function are not known
- Agent executes a set of trials using π.
- Based on its percepts, collect the current state and the reward at that state.
- Goal: Based on sample trials, learn the expected utility $U^\pi(s)$.

$$U^\pi(s) = E \left[\sum_{t=0}^{\infty} \gamma^t R(S_t) \right]$$
Example of trials

\[(1, 1)_{-0.04} \rightarrow (1, 2)_{-0.04} \rightarrow (1, 3)_{-0.04} \rightarrow (1, 2)_{-0.04} \rightarrow (1, 3)_{-0.04} \rightarrow (2, 3)_{-0.04} \rightarrow (3, 3)_{-0.04} \rightarrow (4, 3)+1\]
\[(1, 1)_{-0.04} \rightarrow (1, 2)_{-0.04} \rightarrow (1, 3)_{-0.04} \rightarrow (2, 3)_{-0.04} \rightarrow (3, 3)_{-0.04} \rightarrow (3, 2)_{-0.04} \rightarrow (4, 3)+1\]
\[(1, 1)_{-0.04} \rightarrow (2, 1)_{-0.04} \rightarrow (3, 1)_{-0.04} \rightarrow (3, 2)_{-0.04} \rightarrow (4, 2)_{-1}.\]
Direct Utility Estimation

• **Utility of a state** or **reward-to-go**: the expected total reward from the state onward.

\[(1, 1) \sim 0.04 \sim (1, 2) \sim 0.04 \sim (1, 3) \sim 0.04 \sim (1, 2) \sim 0.04 \sim (1, 3) \sim 0.04 \sim (2, 3) \sim 0.04 \sim (3, 3) \sim 0.04 \sim (4, 3)_{+1}\]

 • (1,1): one sample with a total reward of 0.72
 • (1,2): two samples of total rewards of 0.76 and 0.84
 • (1,3): two samples of total rewards of 0.80 and 0.88
 •

• Use a supervised learning algorithm to estimate the utility function.

• But direct utility estimation requires a much larger number of samples than necessary since it ignores the structure of the problem, namely the Bellman equation (utilities of states are not independent).

\[U_\pi(s) = R(s) + \gamma \sum_{s'} P(s' \mid s, \pi(s)) U_\pi(s')\]
Adaptive Dynamic Programming (ADP)

- Learns the transition model from samples (ML estimation)

```python
function PASSIVE-ADP-AGENT(percept) returns an action
    inputs: percept, a percept indicating the current state s' and reward signal r'
    persistent: π, a fixed policy
                mdp, an MDP with model P, rewards R, discount γ
                U, a table of utilities, initially empty
                N_{sa}, a table of frequencies for state–action pairs, initially zero
                N_{s'|sa}, a table of outcome frequencies given state–action pairs, initially zero
                s, a, the previous state and action, initially null

    if s' is new then U[s'] ← r'; R[s'] ← r'
    if s is not null then
        increment N_{sa}[s, a] and N_{s'|sa}[s', s, a]
        for each t such that N_{s'|sa}[t, s, a] is nonzero do
            P(t | s, a) ← N_{s'|sa}[t, s, a] / N_{sa}[s, a]
            U ← POLICY-EVALUATION(π, U, mdp)
        if s'.TERMINAL? then s, a ← null else s, a ← s', π[s']
    return a
```
Passive ADP Learning

- Issues with ADP
 - Intractable for problems with large state spaces
 - Problems with maximum-likelihood (ML) estimation
- Methods to avoid this issue:
 - Bayesian reinforcement learning\[\pi^* = \arg\max_{\pi} \sum_h P(h | e) u^\pi_h \]
 - Robust control theory\[\pi^* = \arg\max_{\pi} \min_h u^\pi_h \]
Temporal Difference (TD) Learning

• Temporal difference (TD) equation

$U^\pi(s) \leftarrow U^\pi(s) + \alpha(R(s) + \gamma U^\pi(s') - U^\pi(s))$

• TD does not need the transition model (cf. ADP)

```
function PASSIVE-TD-AGENT(percept) returns an action
inputs: percept, a percept indicating the current state s' and reward signal r'
persistent: $\pi$, a fixed policy
persistent: $U$, a table of utilities, initially empty
persistent: $N_s$, a table of frequencies for states, initially zero
persistent: $s, a, r$, the previous state, action, and reward, initially null

if s' is new then $U[s'] \leftarrow r'$
if s is not null then
    increment $N_s[s]$
    $U[s] \leftarrow U[s] + \alpha(N_s[s])(r + \gamma U[s'] - U[s])$
if s'.TERMINAL? then $s, a, r \leftarrow$ null else $s, a, r \leftarrow s', \pi[s'], r'$
return $a$
```

• The algorithm adjusts the utility estimates towards the ideal equilibrium that holds locally when the utility estimates are correct.
• For a correct choice of $\alpha(n)$, it converges to the correct value.
Passive TD Learning

• Compared to ADP
 – Cons: TD learns slowly and shows much variability.
 – Pros: TD is simpler and requires less computation per observation.
Performance of a greedy ADP agent that executes the action recommended by the optimal policy for the learned model (one-step look-ahead).

Finds a policy that reaches (4,3) via (2,1), (3,1), (3,2), (3,3)

- **Exploration-exploitation tradeoff**: tradeoff between exploitation to maximize its reward (as reflected in its current utility estimates) and exploration to maximize its long-term well-being
Exploration Function

- $U^+(s)$: optimistic estimate of the utility at state s
- $N(s,a)$: number of times action a has been tried in state s
- Update equation (value iteration):

 $$U^+(s) \leftarrow R(s) + \gamma \max_a \left(\sum_{s'} P(s' | s, a) U^+(s') , N(s, a) \right)$$

- $f(u,n)$: exploration function, determining how greed (exploitation) is traded off against curiosity (exploration).
 - This function is increasing in u and decreasing in n
 - Example:

 $$f(u,n) = \begin{cases} R^+ & \text{if } n < N_e \\ u & \text{otherwise} \end{cases}$$

 R^+: optimistic estimate of the best possible reward from any state.
Action-Utility Function

- **Q(s,a):** the value of doing action \(a\) in state \(s\).

\[
U(s) = \max_a Q(s, a)
\]

- **Q-learning** is a model-free method: TD agent that learns a **Q-function** does not need a model of the form \(P(s'|s, a)\) for learning or for action selection.

- At equilibrium when Q-values are correct:

\[
Q(s, a) = R(s) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q(s', a')
\]

 cf. Bellman equation:

\[
U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s')
\]

- ADP Q-learning: (1) estimate the transition model; (2) update Q-values.

- TD Q-learning (does not require the transition model)

\[
Q(s, a) \leftarrow Q(s, a) + \alpha (R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a))
\]
• Update rule for Q-learning:

\[
Q(s, a) \leftarrow Q(s, a) + \alpha (R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a))
\]

```python
function Q-LEARNING-AGENT(percept) returns an action
    
in inputs: percept, a percept indicating the current state s' and reward signal r'
    
in persistent: Q, a table of action values indexed by state and action, initially zero
    
eedle: N_{sa}, a table of frequencies for state–action pairs, initially zero
    
    if Terminal?(s) then Q[s, None] \leftarrow r'
    
    if s is not null then
        increment N_{sa}[s, a]
        
        \[
        Q[s, a] \leftarrow Q[s, a] + \alpha (N_{sa}[s, a])(r + \gamma \max_{a'} Q[s', a'] - Q[s, a])
        \]
    
    s, a, r \leftarrow s', \argmax_{a'} f(Q[s', a'], N_{sa}[s', a']), r'
    
    return a
```
SARSA

• SARSA (State-Action-Reward-State-Action)

• Update rule for SARSA

\[
Q(s, a) \leftarrow Q(s, a) + \alpha (R(s) + \gamma Q(s', a') - Q(s, a))
\]

cf. Q-learning: \[
Q(s, a) \leftarrow Q(s, a) + \alpha (R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a))
\]

• For a greedy agent, SARSA is the same as Q-learning

• For an explorative agent, they are different
 – Q-learning (off-policy), SARSA (on-policy)

Initialize \(Q(s, a)\) arbitrarily
Repeat (for each episode):
 Initialize \(s\)
 Choose \(a\) from \(s\) using policy derived from \(Q\) (e.g., \(\varepsilon\)-greedy)
Repeat (for each step of episode):
 Take action \(a\), observe \(r, s'\)
 Choose \(a'\) from \(s'\) using policy derived from \(Q\) (e.g., \(\varepsilon\)-greedy)
 \(Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma Q(s', a') - Q(s, a)]\)
 \(s \leftarrow s'; a \leftarrow a'\)
until \(s\) is terminal
Function Approximation

• For a large or infinite state space, previous approaches cannot be applied.
• **Function approximation**: approximates the utility or Q-function using a finite number of basis functions

\[
\hat{U}_\theta(s) = \theta_1 f_1(s) + \theta_2 f_2(s) + \cdots + \theta_n f_n(s)
\]

• We can reduce the number of values we have to consider (compression).
• The compression achieved by a function approximator, which allows the learning agent to **generalize** from states it has visited to states it has not visited.
• Delta rule: \(\theta_i \leftarrow \theta_i - \alpha \frac{\partial E_j(s)}{\partial \theta_i} = \theta_i + \alpha (u_j(s) - \hat{U}_\theta(s)) \frac{\partial \hat{U}_\theta(s)}{\partial \theta_i} \)

\[E_j(s) = (\hat{U}_\theta(s) - u_j(s))^2/2\]

\(u_j(s)\) is the observed total reward from state \(s\) onward in the \(j\)th trial.
• Delta rule for a linear function approximator:

\[
\hat{U}_\theta(x, y) = \theta_0 + \theta_1 x + \theta_2 y
\]

\(\theta_0 \leftarrow \theta_0 + \alpha (u_j(s) - \hat{U}_\theta(s))\),

\(\theta_1 \leftarrow \theta_1 + \alpha (u_j(s) - \hat{U}_\theta(s))x\),

\(\theta_2 \leftarrow \theta_2 + \alpha (u_j(s) - \hat{U}_\theta(s))y\).
• TD-learning with function approximation

\[\theta_i \leftarrow \theta_i + \alpha [R(s) + \gamma \hat{U}_\theta(s') - \hat{U}_\theta(s)] \frac{\partial \hat{U}_\theta(s)}{\partial \theta_i} \]

• Q-learning with function approximation

\[\theta_i \leftarrow \theta_i + \alpha [R(s) + \gamma \max_{a'} \hat{Q}_\theta(s', a') - \hat{Q}_\theta(s, a)] \frac{\partial \hat{Q}_\theta(s, a)}{\partial \theta_i} \]

• Changing the parameters \(\theta \) in response to an observed transition between two states also changes the values of utilities for every other state
 – Reinforcement learner generalizes from its experiences
 – But there is the problem that there could be no function in the hypothesis space that approximates the true utility function sufficiently well.
Policy Search

- Search for a good policy directly in the policy space.
- Parameterize a policy
 - Example: \(\pi(s) = \max_a \hat{Q}_\theta(s, a) \)
 - Q-learning with function approximation: finds \(\theta \) such that the approximated Q-value is close to the optimal Q-values
 - Policy search: finds \(\theta \) that results in good performance
- Stochastic policy representation (to avoid discontinuities)

\[
\pi_\theta(s, a) = e^{\hat{Q}_\theta(s, a)} / \sum_{a'} e^{\hat{Q}_\theta(s, a')}
\]

(softmax function)

- Policy improvement
 - \(\rho(\theta) \), policy value: the expected reward-to-go when \(\pi_\theta \) is executed.
 - Policy gradient (if \(\rho(\theta) \) is differentiable)
 - Empirical gradient (hill climbing)
 - REINFORCE

\[
\nabla_\theta \rho(\theta) \approx \frac{1}{N} \sum_{j=1}^{N} \left(\frac{\nabla_\theta \pi_\theta(s, a_j)}{\pi_\theta(s, a_j)} R_j(s) \right)
\]