[Invited Talk] Towards the Humanoid Robots of Science Fiction

Presenter: Aaron Ames, Georgia Tech; Time: 4:00pm-5:30pm, Friday (2016/10/14); Location: Room 202, Building 301

This talk is cancelled due to an urgent family matter of the presenter.


The humanoid robot DURUS was unveiled to the public in the midst of the DARPA Robotics Challenge (DRC). While the main competition took place in the stadium, DURUS took part in the Robot Endurance Test with the goal of demonstrating locomotion that is an order of magnitude more efficient than existing bipedal walking on humanoid robots, e.g., the ATLAS robot utilized in the DRC. During this accessible public demonstration of humanoid robotic walking, DURUS walked continuously for over 2½ hours covering over 2 km—all on a single 1.1 kWh battery. At the core of this success was a methodology for designing and realizing dynamic and efficient walking gaits on bipedal robots through a mathematical framework that utilizes hybrid systems models coupled with nonlinear controllers that provably result in stable locomotion. This mathematical foundation allowed for the full utilization of novel mechanical components of DURUS, including: efficient cycloidal gearboxes (allowing for almost lossless transmission of power) and compliant elements at the ankles (absorbing the impacts at foot-strike). Through this combination of formal controller design and novel mechanical design, the humanoid robot DURUS was able to achieve the most efficient walking ever recorded on a humanoid robot. This talk will outline the key elements of the methodology used to achieve this result, present new results on multi-contact humanoid locomotion, demonstrate the extensibility to other bipedal robots and robotic assistive devices, e.g., prostheses, and consider the question: when will the humanoid robots of science fiction become science fact?


Aaron D. Ames is an Associate Professor at the Georgia Institute of Technology in the Woodruff School of Mechanical Engineering and the School of Electrical and Computer Engineering. Prior to joining Georgia Tech, he was an Associate Professor and Morris E. Foster Faculty Fellow II at Texas A&M University. Dr. Ames received a B.S. in Mechanical Engineering and a B.A. in Mathematics from the University of St. Thomas in 2001, and he received a M.A. in Mathematics and a Ph.D. in Electrical Engineering and Computer Sciences from UC Berkeley in 2006. He served as a Postdoctoral Scholar in Control and Dynamical Systems at the California Institute of Technology from 2006 to 2008. At UC Berkeley, he was the recipient of the 2005 Leon O. Chua Award for achievement in nonlinear science and the 2006 Bernard Friedman Memorial Prize in Applied Mathematics. Dr. Ames received the NSF CAREER award in 2010 for his research on bipedal robotic walking and its applications to prosthetic devices, and is the recipient of the 2015 Donald P. Eckman Award recognizing an outstanding young engineer in the field of automatic control. Ames’ lab designs, builds and tests novel bipedal robots, humanoids and prostheses with the goal of achieving human-like bipedal robotic walking and translating these capabilities to robotic assistive devices. His research has received multiple best paper awards and has appeared in a variety of press ranging from technology news sources, e.g., Gizmodo, CNET, Engadget and Scientific American, to main stream media including the Washington Post, PBS, ESPN and CNN.