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Markov Chain Monte Carlo Data Association for
General Multiple-Target Tracking Problems

Songhwai Oh, Stuart Russell, and Shankar Sastry

Abstract—In this paper, we consider the general multiple-
target tracking problem in which an unknown number of
targets appears and disappears at random times and the goal
is to find the tracks of targets from noisy observations. We
propose an efficient real-time algorithm that solves the data
association problem and is capable of initiating and terminat-
ing a varying number of tracks. We take the data-oriented,
combinatorial optimization approach to the data association
problem but avoid the enumeration of tracks by applying a
sampling method called Markov chain Monte Carlo (MCMC).
The MCMC data association algorithm can be viewed as a
“deferred logic” method since its decision about forming a
track is based on both current and past observations. At the
same time, it can be viewed as an approximation to the optimal
Bayesian filter. The algorithm shows remarkable performance
compared to the greedy algorithm and the multiple hypothesis
tracker (MHT) under extreme conditions, such as a large
number of targets in a dense environment, low detection

a hypothesis with the highest posterior as a solution. MHT is
categorized as a “deferred logic” method [16] in which the
decision about forming a new track or removing an existing
track is delayed until enough observations are collected.
Hence, MHT is capable of initiating and terminating a
varying number of tracks and suitable for autonomous
surveillance applications. The main disadvantage of MHT is
its computational complexity since the number of hypothe-
ses grows exponentially over time. Various heuristics are
developed to overcome this complexity, such as pruning,
gating, clustering,N-scan-back logic, [17], [10] and-
best hypotheses [6] using Murty’s algorithm [12]. But the
heuristics are used at the expense of optimality and the algo-
rithm can still suffer in a dense environment. Furthermore,
the running time at each step of the algorithm cannot be

probabilities, and high false alarm rates. bounded easily, making it difficult to deploy in a real-time
surveillance system.

A different approach to the data association problem
I. INTRODUCTION . . L . .

, ) i ] is the joint probabilistic data association filter (JPDAF)

Multmle-target tracklng plays an important role in Many[1]. JPDAF is a suboptimal single-stage approximation to
areas of engineering such as surveillance, computer VisiQfte optimal Bayesian filter. JPDAF is a sequential tracker
and signal processing [1], [5]. Under the most general setup, \hich the associations between the “known” targets
a varying number of indistinguishable targets is movingnq the |atest observations are made sequentially. JPDAF
continuously in a given region and the positions of movingsgymes a fixed number of targets and cannot initiate or
targets are sampled at random intervals. The measuremegigninate tracks since only the current set of observations
of the positions are noisy, with detection probability les§s considered. There are restricted extensions to JPDAF to
than one, and there is a noise background of spurioygoy the formation of a new track (see [5] and references
posmon report_s, i.e., false alarms. Targgts arise at randqmthm)_ Other multiple-target tracking algorithms, such
in space and time. Each target persists independently for,@ the multisensor multitarget mixture reduction (MTMR)
random length of time and then ceases to exist. A track i§4] and the probabilistic multi-hypothesis tracker (PMHT)
defined as a path in space-time traveled by a target. Thfg) also assume a fixed number of targets and cannot
essence of the multiple-target tracking problem is to finghitiate or terminate tracks. Recently, a Bayesian model-

tracks from the no_isy observations; this r_equires solutiongased approach to track a varying number of targets which
to both data association and state estimation problems [18,, initiate and terminate tracks was presented in [13].

_ The data association problem in multiple-target tracking gequential trackers are typically more efficient than
is the problem of finding a partition of obs_ervatlons S”C@eferred-logic trackers such as MHT but they are prone
that each element of a partition is a collection of observgy, make erroneous associations since the associations made
tions generated by a single target or clutter [18]. Howevef, the past are not reversible [16]. In addition, the exact
due to the noise in state transitions and observations, W8cyjation of association probabilities in JPDAF at each
cannot expect to find the exact solution. The most success bge is NP-hard [4] since the related problem of finding
algorithm based on this data-oriented view is the multiplg, permanent of a 0-1 matrix is #P-complete [20]. In
hypothesis tracker (MHT) [17]. In MHT, each hypothesigg) 5 single-stage data association problem is considered

associates past observations with a target and, as a ngiy 5 leave-one-out heuristic is developed to avoid the
set of observations arrives, a new set of hypotheses s, meration of all possible associations.

formed from the previous hypotheses. The algorithm returns 1q gata association problem formulated under the data-

This work was supported by DARPA F30602-00-2-0538 and ArdPri€nted view such as MHT is also known to be NP-hard
MURI DAAD 19-0Z-1-0383 and partially supported by DARPA-USAF [16]. Hence, we cannot expect to find an optimal solution
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sional assignment problem [16]. In both cases, one first finggobability p,. The humber of objects arising at each time
feasible tracks using the gating method and compute tlower R has a Poisson distribution with a paramegi”
cost of each feasible track. Then the optimization routineshere )\, is the birth rate of new objects per unit time,
finds a subset of feasible tracks such that the combingxkr unit volume. The initial position of a new object is
costs are minimized while satisfying the constraints, i.eyniformly distributed overR.
each track has at most one observation at each time and nd_et F* : R? — R be the discrete-time dynamics of the
two tracks share the same observation. However, in a densigiect &, whered is the dimension of the state variable,
environment, the number of feasible tracks can be large amdid letz} € R? be the state of the objeét at timet for
the complexity of the algorithm increases dramatically. % =1,2,..., K. The objectt moves according to
The main contribution of this paper is the development of ,
an efficient real-time algorithm that solves the data associa- i = FR@p) +wp o fort =i, tf — 1
tion problem and is capable of initiating and terminatingyhere wF e RY are white noise processes. The noisy
a varying number of tracks. We take the data-oriente@bservation of the state of the object is measured with a
combinatorial optimization approach to the data associatifetection probabilitypq which is less than unity. There are
problem but avoid the enumeration of tracks by applyingiso false alarms and the number of false alarms has a
a sampling method called Markov chain Monte Carlgpoisson distribution with a parameték:V') where )\; is
(MCMC). Examples of MCMC are Metropolis-Hastingsthe false alarm rate per unit time, per unit volume. het
and Gibbs sampling [7]. The MCMC data associatiolhe the number of observations at timeincluding both
(MCMCDA) algorithm can be viewed as a deferred-logicnhoisy observations and false alarms. kgte R™ be the
method since its decision about forming a track is based onth observation at time for j = 1,...,n,, wherem is
both current and past observations. At the same time, it c@fe dimensionality of each observation vector. Each object
be considered as an approximation to the optimal Bayesig@nerates a unique observation at each sampling time if it
filter if it is used to approximate the association probabilitiess detected. Lefd’ : R — R™ be the observation model.

or expectations such as the average link travel time dhen the observations are generated as follows:
done in [15]. MCMCDA shows remarkable performance

compared to the greedy algorithm and MHT under extremej — { H(xf) +v] if j-th observation is fromy
conditions such as a large number of targets in a dense Ut otherwise,

environment, low detection probabilities, and high faIsQNhere v/ € R™ are white noise processes amg ~
t

alarm_ra_tes. The MCMC method has been fipplied to qa@wif(R) is a random process for false alarms. Notice that,
assomatl_on problems before. .In [3], the G'b.bs S""mp“ng/ith probability 1 — pg, the object is not detected and we
method is used to track a single target using MeasUra| this a missing observation. We assume that targets are

ments from a finite number of linear models, where th‘ﬁﬁdistinguishable in this paper. But, if observations include

measgrer_nent to model assomatlon_ IS unkr_myvn. _In [15], tadrget type or attribute information, the state variable can
combination of MCMC and expectation-maximization (EM)Ioe extended to include target type information

is used to simultaneously track multiple vehicles using ;4o the data-oriented approach, the multiple-target
mea}su_rements from spatially separated sensors and Ie?rrzﬂ:king problem is to partition the observations such that
the intrinsic parameters of sensors. Each state of the Mark

hain in 1151 i iol iation but. unlik d e posterior is maximized, i.e., the maximum a posteriori
chain in ]. IS @ possible association but, unfike our mode MAP) estimate. Under the Bayesian approach, if we are
a uniform prior is used, assuming a fixed number of object

o b i d no fal | iven a function defined ofl, the collection of all partitions
NO MISSINg observations, and no false alarms. of observations (see below for its definition), we seek the

The remainder of this paper is structured as fOIIOWsexpected value of the function given the observations. The

we fqrmally state Fhe (disprete—time) geperal muItipIe-targq\t/lAP estimate found under the data-oriented approach may
tracking problem in Section II. In Section Ill, we Presenty ot he robust but it is sometimes more convenient when rep-

a gef‘era' purpose .MCMCDA z_ilgo_rithr_n for r_nultiple-targetreseming the estimated parameters of varying dimensions.
tracking. The algorithm is applied in simulation to extreme

situations and its performance is compared with the greedy
algorithm and MHT in Section IV. B. Probabilistic Model
Let us first specify the dynamic and measurement models.
Il. GENERAL MULTIPLE-TARGET TRACKING Here we use the usual linear system model but the method
can be easily extended to non-linear models coupled with a
A. Problem non-linear regression algorithm. If an object is obserked
Let T € Z* be the duration of surveillance. L&k times atty, ¢, ..., , its dynamic and measurement models
be the unknown number of objects moving around thean be expressed as:
surveillance regioriR for some durationt?, t*] c [1,T
fork=1,...,K. LetV be the volume o[ﬂlz IfE}ach [obje]ct T = Altigr — i)y, + Gl = twy, 1)
arises at a random position 7 at ¥, moves independently Yt = Cmtoy fori=1,....k
aroundR until ¢} and disappears. At each time, an existingvherew,, andv,, are white Gaussian noises with zero mean
target persists with probability — p, and disppears with and covarianc€) and R, respectivelyA(-), G(-), andC are

)
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where Z is a normalizing constant and/(-|u, %) is the
Gaussian density function with mean and covariance

(2] ) e matrix X. Now under the data-oriented, combinatorial op-
o (3] o r, @ o) %0 timization approach, our goal is to find a partition of
0 observations such thd(w|Y") is maximized.

99 o089

(a) {b)

Fig. 1. (a) An example of observatiorts (each circle represents an

observation and numbers represnt observation times); (b) an example of a”'- MCMC DATA ASSOCIATION ALGORITHM
partitionw of Y

In this section, we develop an MCMC sampler to solve

matrices with appropriate sizes. The entries of the matrif'® multiple-target tracking problem. MCMC-based algo-
Atis1—t:) andG(ti.1—t;) are determined by the sampling "ithms play a significant role in many fields such as physics,
interval £;., — t, for eachi. For clarity, the subsequence Statistics, economics, and engineering [2]. In some cases,
notation for the time index is suppressed for now. kgt MCMC is the only known general algorithm that finds
be the expected value af, givenyi,...,y,_1; P; be the & good approximate solution to a complex problem. in
covariance ofz; given yi,...,y:_1; 4 be the expected polynomial time [9]..I'\/ICM'C 'Fech.nlqu'es havg been applied
value of z, given yi,...,y,;; and P, be the covariance of © Complex probability distribution integration problems,
z giveny, ...,y counting p_roblem_s _su<_:h as #P-complete problems, and

Lety, = {y/ :j=1,...,n,} andY = Use gy V- combinatorial optimization problems [9], [2]. The MCMC
Let 2 be a collection of partitions df such that, foto € Q, approach applied to c_omblnatorlal optimization problems is

1) w={70,71,...,7}: generally I_(nown as simulated annealing.

2) UK Tk7: V ands A7 — 0 fori £ j: 'MCMC is a general method to generate samples from a

3) Tgki:SOa set of falsezalaerS' ' distribution = by constructing a Markoy ch_euvt/_l whose

4) Jreny| < 1fork =1 K andf — 1 T-and Stotes arev and whose stationary distribution r§(w). If

P L Ty we are at statew € 2, we proposev’ €  following the

5) |7l ,> Lfork=1,.., K. ) . proposal distributiom(w, w’). The move is accepted with
Here, K is the number of tracks for the given partition 5, acceptance probabilitt(w,w’) where

w € Q. We call . a track when there is no confusion ) )
although the actual track is the set of estimated states A(w,w') = min <1 m(w)g(w M)) 3)
from the observations;. However, we assume there is a ’ " r(w)g(w,w’) )

deterministic function that returns a set of estimated stat@$herwise the sampler stays.atso that the detailed balance
given a set of observations, so no distinction is required. We q4tisfied. If we make sure tha! is irreducible and
denote byr, (t) the observation at timethat is assigned to 4periogic, then\ converges to its stationary distribution by
the trackr,. Notice thatr (¢) can be empty if itis a missing e ergodic theorem. Hence, for a given bounded funcfion
observation. The fourth reguwement says that a track cape average value of over the sampled states converges to
have at most one observation at each time, but, in the cage ¢,y Notice that it only requires an ability to compute
of multiple sensors, we can easily relax this requirement tg,o ratior (') /7r(w) avoiding the need to normalize

allow multiple observations per track. A track is assumed t0 Tho MCMC data association (MCMCDA) algorithm is
contain at least two observations since we cannot distinguisfdsribed in Algorithm 1. MCMCDA is an MCMC algo-
a track with a single observation from a false alarm. Afjhm whose state space 8 described in Section 1I-B
example of a partition is shown in Fig. 1. and whose stationary distribution is the posterior (2). The

Once a partitions € 2 is chosen, the tracks;, ..., 7k € proposal distribution for MCMCDA consists of five types
w and a set of false alarms, € w are completely ot moves. They are

determined. Hence, for each track, we can estimate thel) birth/death move pair-
states of an object independently since each object moves . P
. . 2) split‘merge move pair;
independently from the other objects. For each traekw, . X .
: : 3) extension/reduction move pair;

we apply the Kalman filter to estimate the stateér) and 4) track update move: and
covariancesB, (1), where B,(7) = CP,(1)CT + R is the 5) track S\FI)VitCh move '
conditional observation covariance at timéor the trackr. ' . . o

Let ¢, be the number of targets from time-1 anda, be 1 "€ MCMCDA moves are graphically illustrated in Fig. 2.

the number of new targets at timeLet z; be the number of We index each move by an integer such that=1 for a
targets terminated at timeande; = e; — . Let d; be the Pirth move,m = 2 for a death move and so on. The move

number of detections at timeandu; = e; — 2, +a, —d, be ™ is chosen randomly from the distributigi (m) where
the number of undetected targets. Finally, fet= n; — d; K is the number of tracks of the current partition\When

be the number of false alarms. It can be shown that tHB€re is no track, we can only propose a birth move, so we
posterior ofw is: seté(m = 1) =1 and0 for all other moves. When there

_ is only a single target, we cannot propose a merge or track
Pw|Y) = L TT1—, p3* (1 — p2)opdt (1 — pa)“ Ap A" switch move, sct;(m = 4) = & (m = 8) = 0. For other
X[ e fro) Hll‘l’l/\/(f(tiﬂ)mm(ﬂ, By, ., (1)), values of K andm, we assumég (m) > 0. The inputs for
(2) MCMCDA are the set of all observations, the number
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Algorithm 1 (MCMC Data Association): "".-.-_‘__--."" birth ".a _.-l""
Input: Y, nme, winit (o) r— 9
Output: @ o) (@) o m P ‘.
. (@) O (b) O
]gJ — Winit . :t @ «— Winit
or n= 0 n - . .-
sample m frrgrcn £x() o O - - split O 0] ‘.»Q' e
propose w’ based on m and w (described below) .." o i - o
sample U from Unif[0, 1] <
we—uw if U<Aw,w) (c). O o mergs (d). o o
& —w if pwlY)/p®|Y)>1
end e T L e s N S
@ O ~f— . @

I - d. s
of samplesnmc, and the initial statevii. At each step of (e). o o e U] - O -
the algorithm,w is the current state of the Markov chain. = - = -
The acceptance probability(w, w’) is defined in (3) where Ty BT uEdate Ty BT
m(w) = P(w|Y) from (2). i — °. .. ®

In Algorithm 1, we use MCMC to find a solution to a | _ ® (o) @ o @

combinatorial optimization problem. So it can be considere
as simulated annealing at a constant temperature. No burn l.._.___‘_' 09 | switch .*--l-.-_.__--l""
samples are used since we are simply looking for a partitio
which maximizes the posterior. In addition, the memory Q—"ﬁ L Q,—" """""" ®.9
requirement of the algorithm is at its bare minimum. Instea{®
of keeping all{w(n)}zg, we can simply keep the partition Fig. 2. Graphical illustration of MCMCDA moves (associations are
with the maximum posteriow. If the algorithm is used for indicated by dotted lines and hollow circles are false alarms)

an integration problem to estimakp .,y f(w) for some
bounded functiory, e.g., average link travel times, we will
need burn-in samples and need to maintain the sufficie
statistics for the desired expectation.

We now describe each move of the sampler in detail.
Rirst, let((d) be a distribution of a random variabfetaking
values from{1,2, ..., d}. We assume the current state of

In order to make the algorithm more efficient, we makéhle chain isw = w? Uw! € Q, wherew = {r} and
two additional assumptions: (1) the maximal directional’, ~ {,071"','1’ 7 }. The proposed partition is denoted by
speed of any target iR is less thar; and (2) the number of ¥ ~ % Jw™ e Q Note the abuse of notation below' with
consecutive missing observations of any track is less éghan indexing of time, i.e., when we say(t;), ¢; means the time
The first assumption is reasonable in a surveillance scenaﬁB_Wh'Ch a target corresponding o the tracks observed
since, in many cases, the maximal speed of a vehicle ﬁst'mes'
generally known based on its type and terrain conditions.
The second assumption is a user-defined parameter. Let )
pa(s) = 1 — (1 — pg)® be the probability the object is A. Birth and Death Moves (Fig. 2 < b)

observed at least once out efsampling times. Then, for o 4 birth move, we increase the number of tracks from
given par, we setd > log(1 — par)/log(1 — pu) to detect g o g7 — K 11 and select, uniformly at random (u.a.r.)
a track with probability larger thapy. For example, given fom {1,...,T—1} as an appearance time of a new track.

pd = .7 andpa = .99, a track is detected with probability | ¢t 7., be the track of this new object. Then we choose
larger than.99 for d > 4. We will now assume that these dy from the distribution¢. Let L1 = {yl : La,(y]) #
) 1 10 1 1

two new conditions are added to the definitiorfbfo each j . ;
elementw €  satisfies these two additional assumptions.(za)’ ysgelt if thgile);vjatiznsl ,Et'& ,sﬁclzhkth; 1]2&' 'énK}' L’liills
] yy S 1!

We now mtroducg_a fj?‘ta strugture which is _used t?/ does not belong to other tracks apdhas at least one
propose a new partition’ in Algorlthm 1. We define a yagcendant iy, (). We chooser:(#) u.a.r. fromL}, .
neighborhood tree of observations as If L} is empty, the move is rejected since the move is
not reversible. Once the initial observation is chosen, we
then choose the subsequent observations for the track
ford=1,...,d,j=1,...,n;andt =1,...,T — 1. Here Fori = 2,3,..., we choosel; from ¢ and choose - (t;)
|| - || is the usual Euclidean distance. This neighborhood.a.r. fromLgy, (7x/(t;—1))\{mx(tic1 +d;) : k=1,..., K}
tree groups temporally separated observations based on thaitess this set is empty. But, fér= 3,4, ..., the process
distances. The parametér allows missing observations. of adding observations tox- terminates with probability
The use of this neighborhood tree makes the algorithm, where0 < v < 1. If |7x/| < 1, the move is rejected. We
more scalable since distant observations will be considerdiden propose this modified partition whesé = w'U{rx}
separately and makes the computations of the proposaidw’® = {70\ 7 }. For a death move, we simply chodse
distribution easier. It is similar to the clustering techniques.a.r. from{1, ..., K'} and delete thé-th track and propose
used in MHT butZ, is fixed for a given set of observations.a new partition where/! = w*\ {7} andw’® = {7y U7y }.

La(yl) = {yfrq € yrra: |yl —yiiall < d -0}
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B. Split and Merge Moves (Fig. 2,< d)

For a split move, we select, (¢,.) u.a.r. from{r(¢;) :
7| > 4,i=2,...,|7%| — 2,k =1,..., K}. Then we split
the track s into 75, and 7, such thatry, = {7s(¢;) :
i=1,...,ryandr, = {7s(t;) : i = r+1,...,|7}.
The modified track partition becomesg! = (w! \ {r,}) U
{7s,} U {7s,} and the false alarm partition’® is updated
accordingly. For a merge move, we consider the set

M LTy (), iy (1)) = Tho (81) € Lty —e, (T, (2)),
f =i | for ky # ko, 1 < ky ko < K}

We select a paifrs, (t¢), 75, (t1)) u.a.r. fromM. The tracks
are combined into a single track = 7,, U 7,,. Then we
propose a new partition whetg! = (w!\ ({7, }U{7s, }))U
{7} andw’® with appropriate rearrangements.

C. Extension and Reduction Moves (Fig.c2~ f)

In a track extension move, we select a tracl.a.r. from
K available tracks iw. We reassign observations forafter
the disappearance tintg| as done in the track birth move.
For a track reduction move, we select a track.a.r. from
K available tracks inv andr u.a.r. from{2,... |r| — 1}.
We shorten the track to {7(t1),...,7(t.)} by removing
the observations assigned toafter the timet,. ;.

D. Track Update Move (Fig. 25 < h)

In a track update move, we select a traclu.a.r. from
K available tracks inw. Then we pickr u.a.r. from
{1,2,...,|7]} and reassign observations fogfter the time
t, as done in the track birth move.

E. Track Switch Move (Fig. 2, < j)

¢(d) > 0 and all trackst, are legal, the probability of
proposing T, at wi—; by the birth move is positive and
q(wk,wgt+1) > 0. For the move fromw to «’, consider
K consecutive death movesy = w,wi_1,...,wy = w'.
The probability of removing the track; atw; by the death
move is positive and(wg+1,wy) > 0. SinceP(w|Y) >0
for all k, the chain can move from’ to w and fromw to
w’. Hence, the chain is irreducible. ]

The Markov chain designed by Algorithm 1 is irreducible
(Theorem 1) and aperiodic since there is always a positive
probability of staying at the current state in the track
update move. In addition, the transitions described in Algo-
rithm 1 satisfy the detailed balance condition since it uses
the Metropolis-Hastings kernel (3). Hence, by the ergodic
theorem, the chain converges to its stationary distribution.
Notice that the other moves are designed to improve the
performance of the algorithm.

IV. SIMULATION RESULTS

For the simulations we consider surveillance over a
rectangular region on a plarg, = [0, L] x [0, L] C R2. The
state vector ist = [x,y, 4,97 where(z,y) is a position
on R along the usuak andy axes andz,y) is a velocity
vector. The linear system model (1) is used whé&iis an
interval between observations and
T

1046 0 20 10

|0 1 0 ¢ | o &£ o 1
AC)=110 0 1 o |CO= s b C—[o 0}

00 0 1 0o 6 0 0

The covariance matrices afg = diag(100,100) and R =
diag(25, 25).

The complexity of multiple-target tracking problems can
be measured by several metrics: (1) the intensity of the false
alarm rate); (2) the detection probabilityy; and (3) the

For a track switch move, we select a pair of observadensity of tracks. The problem gets more challenging with

tions (7%, (tp), Tk, (t4)) from two different tracks such that,
Ty (tp+1) € La(Thy(tq)) and 7x,(tg41) € La (7h, (tp)),
whered = t, 1 —tq, d = tgy1 —t, and0 < d,d’ < d.
Then we let

Tky = {T’fl (tl)v s Thy (tp)7 Tko (tq+1); sy Tho (t\TkQ\)}
Thky = {T’fz (tl)v s Tho (tq)a Tk (tp-‘rl)a sy Thy (t\Tkl \)}

Theorem 1:Suppose thab < p,, pg < 1 and Ay, As > 0.
If ¢(d) >0, forall d € {1,...,d}, then the Markov chain
designed by Algorithm 1 is irreducible.

Proof:
illustrate the irreducibility of the chain. Sinfe< p,, pq < 1
andp, At > 0, P(w|Y') > 0 for all w € 2. Take an arbitrary
partition w € Q, sayw = {79, 71,...,7x }. Now consider
the partitionw’ € 2, such thats’ = {7}, i.e.,w’ assigns all
observations as false alarms. Sincés arbitrary, the chain
is irreducible if the chain can move fro@i to w and fromw
to w’. For the move fromv’ to w, considerk consecutive
birth moves:wy = w',w; = {7\ 1}, 1}, .. ,wx =
{r\{UE 7}, 7, .., Tk} = w. Sincew € €, all tracks

increasing)\s, decreasingy, increasingk’, and increasing
density of tracks. The number of tracks itself may not
make the problem more difficult if they are scattered apart.
The difficulty arises when there are many tracks that are
moving closely and crossing each other; this is when the
ambiguity of data association is greater. Hence, we only
consider situations in which tracks move very closely so we
can control the density of tracks by the number of tracks.
We study the performance of the MCMCDA algorithm
against the greedy algorithm and MHT by varying the

The birth and death moves are sufficient tqparameters listed above. The greedy algorithm is a batch-

mode nearest neighbor multiple-target tracking algorithm.
The algorithm first marks all observations as false alarms,
and then picks two unmarked observations at different times
to estimate an initial state. Then it forms a canditate track by
picking unmarked observations which are the nearest to the
predicted states for subsequent time steps. The candidate
track is validated as a track and observations associated
to the candidate track are marked if the marginal of the
candidate track exceeds a threshold. The process is repeated

7 are legal, i.e.7; satisfies the constraints described in Secdntil no more track can be found.

tion lI-B and, fori = 1,..., || —1, 7 (tit1) € La(mx(ti))
for 1 <d=t;41—t; <d. Thus,wy € Q for all k. Because

Based on our model described above, we have generated
different scenarios. In particular, in all cases, except for
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the online tracking, half of the new objects appear fron 5., ‘ ‘ ‘
the left bottom quadrant oR and the other half appear - ﬁﬂra?rdv ]
from the right bottom quadrant. The actual initial positions -o- MCMC
are chosen randomly from each quadrant. They all mo\
diagonally so each group of tracks crosses the other gro
in the middle of R. Also targets move very close to each
other and there are also crossovers within each group. T
situations we have used for simulations below include ver
extreme cases and, in our opinion, such complex situatiol 500(
have not appeared in the multiple-target tracking literature
Since the number of targets is not fixed, it is difficult to i

compare algorithms using a standard criterion suchastt | .- i
residual mean square error. Hence, we introduce two ne % - 20 50 80 100
metrics to measure the effectiveness of each data associat Number of fracks (K}

algorithm. Letw* be the true partition with which the test Fig. 4. Average running time vs. number of tracks

case was generated. For € 2, we represent the set of ) . )
all associations inw as SAw) = {(r,47,t7,,) : i = Mmaximum track tree depth is 5, and the maximum Maha-
9 by by .

1 I7| — 1,7 € w}, wheret7 is the time at which the lanobis distance is 5.9. All simulations are run on a PC with
AR ) 1 1

track 7 is observedi times. Let CAw) = {(r.,t,s) € & 2.6-GHz Intel processor.

SA(w) : 7(t) = 7*(t), 7(s) = 7*(s), 7* € w*} be the set of

correct associations in relative tow™. The two new Metrics A Experiment | (Number of Tracks)

we will be using are the normalized correct associations

A
o
o
o
T
s,
A,

Running time (sec)

(NCA) and incorrect-to-correct association ratio (ICAR): [N this experiment, we varg’ from 5 to 100 (the actual
values of K are 5, 10, 20, 30, 40, 50, 75 and 100). The
NCA(w) — |CA(w)| @ other parameters are held fixeR: = [0, 1000] x [0, 1000],
|SA(w)] T = 10, &V = 1, v = 130 unit lengths per unit time.
SA —ICA The main focus of this experiment is to test the accurac
CARW) _ [SAWI-CAWI o p y

of MCMCDA against other algorithms so the tracks are
detected at all times, however, we have ggt= .9 for
NCA measures the ratio between the number of corregtie prior calculation. We have also sét= 1. Since all
associations and the number of associations in the trggicks are observed, the number of observations increases
partition while ICAR measures the number of incorrects the number of tracks increases. For each valug,ofie
associations per correct association. We measure the pgindomly generated five tests. The results for MCMCDA
formance of each algorithm by NCA, ICAR, the estimatiorare the average values over 10 repeated runs and the initial
error in the number of tracksjw*| — |w||, and the running state is initialized with the greedy algorithm and 10,000
time of the algorithm. samples are used. The average NCAs, ICARs and the
Both MCMCDA and greedy algorithms are written in estimation error in the numbers of tracks for three different
C++ with Matlab interfaces. We have used the C++ implealgorithms are shown in Fig. 3. The running times of
mentation of MHT from [6]%, which implements pruning, three algorithms are shown in Fig. 4 (the running time
gating, clustering,N-scan-back logic and-best hypothe- of MCMCDA includes the initialization step). Although
ses. The parameters for MHT are fine-tuned so that the maximum number of hypotheses of 1000 per group
gives similar performance when there are 10 targets: thie a large number, with increasing numbers of tracks, the
maximum number of hypotheses in a group is 1000, theerformance of MHT deteriorates due to pruning. But both
greedy and MCMCDA keep good performance, although
Lhitp:/www.ee.ucl.ac.uk/ “icox/ the greedy algorithm detects a less number of tracks for

[CAw)]
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TABLE |
PERFORMANCE OFONLINE MCMCDA TRACKER
RUNNING TIMES (RT) IN SECONDS

large K. In addition, the running times of both greedy and
MCMCDA are significantly less than that of MHT.

B. Experiment Il (False Alarms) Number of samples
: . 1,000 5,000
Now the settings are the same as Experiment | but we K T NCA TICAR | RT | NCA T ICAR | RT
vary the false alarm rates while the number of tracks is 100 | .95 19 | 06| .98 13 | 28
fixed at K = 10. The test cases for this experiment are 200 94 | 06 [.09] 97 | .05 | 41
300 | .92 07 | 11| 97 05 | 55

prepared as follows. We first generated five different random
scenarios each with 10 tracks. Then, we applied differelymplexity of the problem instance and is not predictable
false alarm rates to generate test cases. The false alarm rategqvance.

are varied from\;V = 1 to \VV = 100 with an increment of
10. 10,000 samples are used for MCMCDA and the resul . .
for MCMCDA are the average values over 10 repeated” Online MCMCDA Multiple-Target Tracker

runs. The average NCAs, ICARs and the estimation error The extension of MCMCDA to an online, real-time

in the numbers of tracks for three different algorithms atracking is a trivial task. We implement a sliding window
different false alarm rates are shown in Fig. 5. It shows thef size ws using Algorithm 1. At each time step, we
remarkable performance of MCMCDA at h|gh false alarnHse the preViOUS estimate to initialize MCMCDA and run
rates while the other two algorithms perform poorly. TheCMCDA on the observations belonging to the current
greedy algorithm scores higher in NCA than MCMCDAWindow. A total of three test cases are generated: (case
but poorly in ICAR. In addition, it reports spurious tracksl) 100 tracks, (case 2) 200 tracks and (case 3) 300 tracks.
at high false alarm rates. Notice that MHT does not makéhe surveillance duration is increased To= 1000 and

any correct associations at high false alarm ratgg, > 80,  the surveillance region is no® = [0, 10000] x [0, 10000].

so ICARs for MHT at)\V > 80 are not reported. The other parameters arg;V = 10, pg = .9, d = 3,
v = 230 and ws = 10. The objects appear and disappear

at random in time and space so the number of tracks

) ) ) _. changes in time. These test cases represent instances of
In this experiment we vary the detection probabilityyhe general (discrete-time) multiple-target tracking problem.

pa from .3 to .9 with an increment of .1 while keeping the average NCAs and ICARs over the sliding window

the other parameters as the previous experiments exceply the average execution time per simulation time are

K =10, V' = 1, T = 15 andd = 5. Now the tracks ghqwn in Table I. Notice that MCMCDA achieves excellent
are not observed all the time. For each valuepgffive performance in all cases with less than one second of
test cases are randomly generated and the average NCAgecytion time.

ICARs and the estimation error in the numbers of tracks

are shown in Fig. 6. For MCMCDA, we present two cases: V. CONCLUSIONS

MCMC(15K) with 15,000 samples and MCMC(150K) with o . i .

150,000 samples. It shows that MCMCDA outperforms the 1€ general (discrete-time) multiple-target tracking prob-

other algorithms at low detection probabilities. At high!€m is described and an MCMCDA algorithm is proposed.

detection probabilities, MHT scores higher than MCMCDACUT MCMCDA tracker, a data association algorithm ca-

but it reports a higher number of tracks, meaning that pable of initiating and terminating a varying number of

fragments tracks. tracks, is flexible and can easily incorporate any domain
Although, in theory, MHT gives an optimal solution in specific knowledge to make it more efficient. Instead of

the sense of MAP, it performs poorly when the detectiof€arching over the whole solution space, the MCMC algo-
probability is low or the false alarm rate is high due tgfithm randomly searches over the space where the posterior
the heuristics such as pruning andscan-back techniques is concentrated. Our simulation results show remarkable
used to reduce the complexity. The heuristics are requird§’formance of the MCMCDA algorithm under extreme
parts of MHT in practice. Without the pruning adé-scan- conditions such as a large number of targets in a dense
back logic, the problem complexity grows exponentially fasEnvironment, low detection probabilities, and high false
even for a small problem. In practice, MHT with heuristics?larm rates. We have shown that the algorithm can be
works well when a few number hypotheses carry mo&Xtended as an online, real-time algorithm with excellent
of the weight. When the detection probability is low orPerformance.
the false alarm rate is high, there are many hypotheses

with low weights and there is no small set of dominating
hypotheses, so MHT cannot perform well. In addition, whenl1l Y. Bar-Shalom and T.E. Fortmanriracking and Data Association

he d . bability is high. MHT . f f Mathematics in Science and Engineering Series 179 Academic Press,
the detection probability is high, again suffers from sz piego, CA, 1988.

a large number of observations. Another noticeable benefip] 1. Beichl and F. Sullivan. The metropolis algorithm. Gomputing

of the MCMCDA algorithm is that its running time can ___ in Science and %”gi”ee”“go'ume 2(}()' pages 65-69, ZOOOI- §

be regulated by the number of samples and the number cg?] N. Bergman and A. Doucet. ~Markov chain monte carlo data

- g . association for target tracking. IEEE Int. Conference on Acoustics,
observations but the running time of MHT depends on the  Speech, and Signal Processing (ICASSR®)0.

C. Experiment Il (Detection Probability)
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