
TO APPEAR IN IEEE CONFERENCE ON DECISION AND CONTROL 2004 1

Markov Chain Monte Carlo Data Association for
General Multiple-Target Tracking Problems

Songhwai Oh, Stuart Russell, and Shankar Sastry

Abstract— In this paper, we consider the general multiple-
target tracking problem in which an unknown number of
targets appears and disappears at random times and the goal
is to find the tracks of targets from noisy observations. We
propose an efficient real-time algorithm that solves the data
association problem and is capable of initiating and terminat-
ing a varying number of tracks. We take the data-oriented,
combinatorial optimization approach to the data association
problem but avoid the enumeration of tracks by applying a
sampling method called Markov chain Monte Carlo (MCMC).
The MCMC data association algorithm can be viewed as a
“deferred logic” method since its decision about forming a
track is based on both current and past observations. At the
same time, it can be viewed as an approximation to the optimal
Bayesian filter. The algorithm shows remarkable performance
compared to the greedy algorithm and the multiple hypothesis
tracker (MHT) under extreme conditions, such as a large
number of targets in a dense environment, low detection
probabilities, and high false alarm rates.

I. INTRODUCTION

Multiple-target tracking plays an important role in many
areas of engineering such as surveillance, computer vision,
and signal processing [1], [5]. Under the most general setup,
a varying number of indistinguishable targets is moving
continuously in a given region and the positions of moving
targets are sampled at random intervals. The measurements
of the positions are noisy, with detection probability less
than one, and there is a noise background of spurious
position reports, i.e., false alarms. Targets arise at random
in space and time. Each target persists independently for a
random length of time and then ceases to exist. A track is
defined as a path in space-time traveled by a target. The
essence of the multiple-target tracking problem is to find
tracks from the noisy observations; this requires solutions
to both data association and state estimation problems [18].

The data association problem in multiple-target tracking
is the problem of finding a partition of observations such
that each element of a partition is a collection of observa-
tions generated by a single target or clutter [18]. However,
due to the noise in state transitions and observations, we
cannot expect to find the exact solution. The most successful
algorithm based on this data-oriented view is the multiple
hypothesis tracker (MHT) [17]. In MHT, each hypothesis
associates past observations with a target and, as a new
set of observations arrives, a new set of hypotheses is
formed from the previous hypotheses. The algorithm returns

This work was supported by DARPA F30602-00-2-0538 and ARO
MURI DAAD 19-OZ-1-0383 and partially supported by DARPA-USAF
FA8750-04-2-0222.

The authors are with the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, CA 94720,
{sho,russell,sastry }@eecs.berkeley.edu .

a hypothesis with the highest posterior as a solution. MHT is
categorized as a “deferred logic” method [16] in which the
decision about forming a new track or removing an existing
track is delayed until enough observations are collected.
Hence, MHT is capable of initiating and terminating a
varying number of tracks and suitable for autonomous
surveillance applications. The main disadvantage of MHT is
its computational complexity since the number of hypothe-
ses grows exponentially over time. Various heuristics are
developed to overcome this complexity, such as pruning,
gating, clustering,N -scan-back logic, [17], [10] andk-
best hypotheses [6] using Murty’s algorithm [12]. But the
heuristics are used at the expense of optimality and the algo-
rithm can still suffer in a dense environment. Furthermore,
the running time at each step of the algorithm cannot be
bounded easily, making it difficult to deploy in a real-time
surveillance system.

A different approach to the data association problem
is the joint probabilistic data association filter (JPDAF)
[1]. JPDAF is a suboptimal single-stage approximation to
the optimal Bayesian filter. JPDAF is a sequential tracker
in which the associations between the “known” targets
and the latest observations are made sequentially. JPDAF
assumes a fixed number of targets and cannot initiate or
terminate tracks since only the current set of observations
is considered. There are restricted extensions to JPDAF to
allow the formation of a new track (see [5] and references
within). Other multiple-target tracking algorithms, such
as the multisensor multitarget mixture reduction (MTMR)
[14] and the probabilistic multi-hypothesis tracker (PMHT)
[19], also assume a fixed number of targets and cannot
initiate or terminate tracks. Recently, a Bayesian model-
based approach to track a varying number of targets which
can initiate and terminate tracks was presented in [13].

Sequential trackers are typically more efficient than
deferred-logic trackers such as MHT but they are prone
to make erroneous associations since the associations made
in the past are not reversible [16]. In addition, the exact
calculation of association probabilities in JPDAF at each
stage is NP-hard [4] since the related problem of finding
the permanent of a 0-1 matrix is #P-complete [20]. In
[8], a single-stage data association problem is considered
and a leave-one-out heuristic is developed to avoid the
enumeration of all possible associations.

The data association problem formulated under the data-
oriented view such as MHT is also known to be NP-hard
[16]. Hence, we cannot expect to find an optimal solution
in polynomial time unlessP = NP . An optimization
approach to data association has been applied as a 0-1
integer programming problem [11] and as a multidimen-

TO APPEAR IN IEEE CONFERENCE ON DECISION AND CONTROL 2004 2

sional assignment problem [16]. In both cases, one first finds
feasible tracks using the gating method and compute the
cost of each feasible track. Then the optimization routine
finds a subset of feasible tracks such that the combined
costs are minimized while satisfying the constraints, i.e.,
each track has at most one observation at each time and no
two tracks share the same observation. However, in a dense
environment, the number of feasible tracks can be large and
the complexity of the algorithm increases dramatically.

The main contribution of this paper is the development of
an efficient real-time algorithm that solves the data associa-
tion problem and is capable of initiating and terminating
a varying number of tracks. We take the data-oriented,
combinatorial optimization approach to the data association
problem but avoid the enumeration of tracks by applying
a sampling method called Markov chain Monte Carlo
(MCMC). Examples of MCMC are Metropolis-Hastings
and Gibbs sampling [7]. The MCMC data association
(MCMCDA) algorithm can be viewed as a deferred-logic
method since its decision about forming a track is based on
both current and past observations. At the same time, it can
be considered as an approximation to the optimal Bayesian
filter if it is used to approximate the association probabilities
or expectations such as the average link travel time as
done in [15]. MCMCDA shows remarkable performance
compared to the greedy algorithm and MHT under extreme
conditions such as a large number of targets in a dense
environment, low detection probabilities, and high false
alarm rates. The MCMC method has been applied to data
association problems before. In [3], the Gibbs sampling
method is used to track a single target using measure-
ments from a finite number of linear models, where the
measurement to model association is unknown. In [15], a
combination of MCMC and expectation-maximization (EM)
is used to simultaneously track multiple vehicles using
measurements from spatially separated sensors and learn
the intrinsic parameters of sensors. Each state of the Markov
chain in [15] is a possible association but, unlike our model,
a uniform prior is used, assuming a fixed number of objects,
no missing observations, and no false alarms.

The remainder of this paper is structured as follows.
We formally state the (discrete-time) general multiple-target
tracking problem in Section II. In Section III, we present
a general purpose MCMCDA algorithm for multiple-target
tracking. The algorithm is applied in simulation to extreme
situations and its performance is compared with the greedy
algorithm and MHT in Section IV.

II. GENERAL MULTIPLE-TARGET TRACKING

A. Problem

Let T ∈ Z+ be the duration of surveillance. LetK
be the unknown number of objects moving around the
surveillance regionR for some duration[tki , tkf] ⊂ [1, T]
for k = 1, . . . ,K. Let V be the volume ofR. Each object
arises at a random position inR at tki , moves independently
aroundR until tkf and disappears. At each time, an existing
target persists with probability1 − pz and disppears with

probability pz. The number of objects arising at each time
over R has a Poisson distribution with a parameterλbV
where λb is the birth rate of new objects per unit time,
per unit volume. The initial position of a new object is
uniformly distributed overR.

Let F k : Rd → Rd be the discrete-time dynamics of the
object k, whered is the dimension of the state variable,
and letxk

t ∈ Rd be the state of the objectk at time t for
k = 1, 2, . . . ,K. The objectk moves according to

xk
t+1 = F k(xk

t) + wk
t for t = tki , . . . , tkf − 1,

where wk
t ∈ Rd are white noise processes. The noisy

observation of the state of the object is measured with a
detection probabilitypd which is less than unity. There are
also false alarms and the number of false alarms has a
Poisson distribution with a parameter(λfV) where λf is
the false alarm rate per unit time, per unit volume. Letnt

be the number of observations at timet, including both
noisy observations and false alarms. Letyj

t ∈ Rm be the
j-th observation at timet for j = 1, . . . , nt, wherem is
the dimensionality of each observation vector. Each object
generates a unique observation at each sampling time if it
is detected. LetHj : Rd → Rm be the observation model.
Then the observations are generated as follows:

yj
t =

{
Hj(xk

t) + vj
t if j-th observation is fromxk

t

ut otherwise,

where vj
t ∈ Rm are white noise processes andut ∼

Unif(R) is a random process for false alarms. Notice that,
with probability 1 − pd, the object is not detected and we
call this a missing observation. We assume that targets are
indistinguishable in this paper. But, if observations include
target type or attribute information, the state variable can
be extended to include target type information.

Under the data-oriented approach, the multiple-target
tracking problem is to partition the observations such that
the posterior is maximized, i.e., the maximum a posteriori
(MAP) estimate. Under the Bayesian approach, if we are
given a function defined onΩ, the collection of all partitions
of observations (see below for its definition), we seek the
expected value of the function given the observations. The
MAP estimate found under the data-oriented approach may
not be robust but it is sometimes more convenient when rep-
resenting the estimated parameters of varying dimensions.

B. Probabilistic Model

Let us first specify the dynamic and measurement models.
Here we use the usual linear system model but the method
can be easily extended to non-linear models coupled with a
non-linear regression algorithm. If an object is observedk
times att1, t2, . . . , tk, its dynamic and measurement models
can be expressed as:

xti+1 = A(ti+1 − ti)xti
+ G(ti+1 − ti)wti

yti
= Cxti

+ vti
for i = 1, . . . , k,

(1)

wherewti
andvti

are white Gaussian noises with zero mean
and covarianceQ andR, respectively.A(·), G(·), andC are

TO APPEAR IN IEEE CONFERENCE ON DECISION AND CONTROL 2004 3

Fig. 1. (a) An example of observationsY (each circle represents an
observation and numbers represnt observation times); (b) an example of a
partition ω of Y

matrices with appropriate sizes. The entries of the matrix
A(ti+1−ti) andG(ti+1−ti) are determined by the sampling
interval ti+1 − ti for eachi. For clarity, the subsequence
notation for the time index is suppressed for now. Letx̄t

be the expected value ofxt given y1, . . . , yt−1; P̄t be the
covariance ofxt given y1, . . . , yt−1; x̂t be the expected
value of xt given y1, . . . , yt; and P̂t be the covariance of
xt given y1, . . . , yt.

Let yt = {yj
t : j = 1, . . . , nt} and Y =

⋃
t∈{1,,...,T} yt.

Let Ω be a collection of partitions ofY such that, forω ∈ Ω,

1) ω = {τ0, τ1, . . . , τK};
2)

⋃K
k=0 τk = Y andτi ∩ τj = ∅ for i 6= j;

3) τ0 is a set of false alarms;
4) |τk ∩ yt| ≤ 1 for k = 1, . . . ,K andt = 1, . . . , T ; and
5) |τk| > 1 for k = 1, . . . ,K.

Here, K is the number of tracks for the given partition
ω ∈ Ω. We call τk a track when there is no confusion
although the actual track is the set of estimated states
from the observationsτk. However, we assume there is a
deterministic function that returns a set of estimated states
given a set of observations, so no distinction is required. We
denote byτk(t) the observation at timet that is assigned to
the trackτk. Notice thatτk(t) can be empty if it is a missing
observation. The fourth requirement says that a track can
have at most one observation at each time, but, in the case
of multiple sensors, we can easily relax this requirement to
allow multiple observations per track. A track is assumed to
contain at least two observations since we cannot distinguish
a track with a single observation from a false alarm. An
example of a partition is shown in Fig. 1.

Once a partitionω ∈ Ω is chosen, the tracksτ1, . . . , τK ∈
ω and a set of false alarmsτ0 ∈ ω are completely
determined. Hence, for each track, we can estimate the
states of an object independently since each object moves
independently from the other objects. For each trackτ ∈ ω,
we apply the Kalman filter to estimate the statesx̄t(τ) and
covariancesBt(τ), whereBt(τ) = CP̄t(τ)CT + R is the
conditional observation covariance at timet for the trackτ .

Let et be the number of targets from timet−1 andat be
the number of new targets at timet. Let zt be the number of
targets terminated at timet andct = et − zt. Let dt be the
number of detections at timet andut = et−zt +at−dt be
the number of undetected targets. Finally, letft = nt − dt

be the number of false alarms. It can be shown that the
posterior ofω is:

P (ω|Y) = 1
Z

∏T
t=1 pzt

z (1− pz)ctpdt

d (1− pd)utλat

b λft

f

×
∏

τ∈ω\{τ0}
∏|τ |−1

i=1 N (τ(ti+1)|x̄ti+1(τ), Bti+1(τ)),
(2)

where Z is a normalizing constant andN (·|µ, Σ) is the
Gaussian density function with meanµ and covariance
matrix Σ. Now under the data-oriented, combinatorial op-
timization approach, our goal is to find a partition of
observations such thatP (ω|Y) is maximized.

III. MCMC DATA ASSOCIATION ALGORITHM

In this section, we develop an MCMC sampler to solve
the multiple-target tracking problem. MCMC-based algo-
rithms play a significant role in many fields such as physics,
statistics, economics, and engineering [2]. In some cases,
MCMC is the only known general algorithm that finds
a good approximate solution to a complex problem in
polynomial time [9]. MCMC techniques have been applied
to complex probability distribution integration problems,
counting problems such as #P-complete problems, and
combinatorial optimization problems [9], [2]. The MCMC
approach applied to combinatorial optimization problems is
generally known as simulated annealing.

MCMC is a general method to generate samples from a
distribution π by constructing a Markov chainM whose
states areω and whose stationary distribution isπ(ω). If
we are at stateω ∈ Ω, we proposeω′ ∈ Ω following the
proposal distributionq(ω, ω′). The move is accepted with
an acceptance probabilityA(ω, ω′) where

A(ω, ω′) = min
(

1,
π(ω′)q(ω′, ω)
π(ω)q(ω, ω′)

)
, (3)

otherwise the sampler stays atω, so that the detailed balance
is satisfied. If we make sure thatM is irreducible and
aperiodic, thenM converges to its stationary distribution by
the ergodic theorem. Hence, for a given bounded functionf ,
the average value off over the sampled states converges to
Eπf(ω). Notice that it only requires an ability to compute
the ratioπ(ω′)/π(ω) avoiding the need to normalizeπ.

The MCMC data association (MCMCDA) algorithm is
described in Algorithm 1. MCMCDA is an MCMC algo-
rithm whose state space isΩ described in Section II-B
and whose stationary distribution is the posterior (2). The
proposal distribution for MCMCDA consists of five types
of moves. They are

1) birth/death move pair;
2) split/merge move pair;
3) extension/reduction move pair;
4) track update move; and
5) track switch move.

The MCMCDA moves are graphically illustrated in Fig. 2.
We index each move by an integer such thatm = 1 for a
birth move,m = 2 for a death move and so on. The move
m is chosen randomly from the distributionξK(m) where
K is the number of tracks of the current partitionω. When
there is no track, we can only propose a birth move, so we
set ξ0(m = 1) = 1 and0 for all other moves. When there
is only a single target, we cannot propose a merge or track
switch move, soξ1(m = 4) = ξ1(m = 8) = 0. For other
values ofK andm, we assumeξK(m) > 0. The inputs for
MCMCDA are the set of all observationsY , the number

TO APPEAR IN IEEE CONFERENCE ON DECISION AND CONTROL 2004 4

Algorithm 1 (MCMC Data Association):
Input: Y, nmc, ωinit
Output: ω̂

ω ← ωinit ; ω̂ ← ωinit
for n = 1 to nmc

sample m from ξK(·)
propose ω′ based on m and ω (described below)
sample U from Unif[0, 1]
ω ← ω′ if U < A(ω, ω′)
ω̂ ← ω if p(ω|Y)/p(ω̂|Y) > 1

end

of samplesnmc, and the initial stateωinit . At each step of
the algorithm,ω is the current state of the Markov chain.
The acceptance probabilityA(ω, ω′) is defined in (3) where
π(ω) = P (ω|Y) from (2).

In Algorithm 1, we use MCMC to find a solution to a
combinatorial optimization problem. So it can be considered
as simulated annealing at a constant temperature. No burn-in
samples are used since we are simply looking for a partition
which maximizes the posterior. In addition, the memory
requirement of the algorithm is at its bare minimum. Instead
of keeping all{ω(n)}nmc

n=1, we can simply keep the partition
with the maximum posterior,̂ω. If the algorithm is used for
an integration problem to estimateEP (ω|Y)f(ω) for some
bounded functionf , e.g., average link travel times, we will
need burn-in samples and need to maintain the sufficient
statistics for the desired expectation.

In order to make the algorithm more efficient, we make
two additional assumptions: (1) the maximal directional
speed of any target inR is less than̄v; and (2) the number of
consecutive missing observations of any track is less thand̄.
The first assumption is reasonable in a surveillance scenario
since, in many cases, the maximal speed of a vehicle is
generally known based on its type and terrain conditions.
The second assumption is a user-defined parameter. Let
pdt(s) = 1 − (1 − pd)s be the probability the object is
observed at least once out ofs sampling times. Then, for
given p̄dt, we setd̄ ≥ log(1 − p̄dt)/ log(1 − pd) to detect
a track with probability larger than̄pdt. For example, given
pd = .7 and p̄dt = .99, a track is detected with probability
larger than.99 for d̄ ≥ 4. We will now assume that these
two new conditions are added to the definition ofΩ so each
elementω ∈ Ω satisfies these two additional assumptions.

We now introduce a data structure which is used to
propose a new partitionω′ in Algorithm 1. We define a
neighborhood tree of observations as

Ld(y
j
t) = {yk

t+d ∈ yt+d : ‖yj
t − yk

t+d‖ ≤ d · v̄}

for d = 1, . . . , d̄, j = 1, . . . , nt and t = 1, . . . , T − 1. Here
‖ · ‖ is the usual Euclidean distance. This neighborhood
tree groups temporally separated observations based on their
distances. The parameterd allows missing observations.
The use of this neighborhood tree makes the algorithm
more scalable since distant observations will be considered
separately and makes the computations of the proposal
distribution easier. It is similar to the clustering technique
used in MHT butLd is fixed for a given set of observations.

Fig. 2. Graphical illustration of MCMCDA moves (associations are
indicated by dotted lines and hollow circles are false alarms)

We now describe each move of the sampler in detail.
First, letζ(d) be a distribution of a random variabled taking
values from{1, 2, . . . , d̄}. We assume the current state of
the chain isω = ω0 ∪ ω1 ∈ Ω, where ω0 = {τ0} and
ω1 = {τ1, . . . , τK}. The proposed partition is denoted by
ω′ = ω′0 ∪ω′1 ∈ Ω. Note the abuse of notation below with
indexing of time, i.e., when we sayτ(ti), ti means the time
at which a target corresponding to the trackτ is observed
i times.

A. Birth and Death Moves (Fig. 2,a ↔ b)

For a birth move, we increase the number of tracks from
K to K ′ = K +1 and selectt1 uniformly at random (u.a.r.)
from {1, . . . , T − 1} as an appearance time of a new track.
Let τK′ be the track of this new object. Then we choose
d1 from the distributionζ. Let L1

d1
= {yj

t1 : Ld1(y
j
t1) 6=

∅, yj
t1 6∈ τk(t1), j = 1, . . . , nt1 , k = 1, . . . ,K}. L1

d1
is

a set of observations att1 such that, for anyy ∈ L1
d1

,
y does not belong to other tracks andy has at least one
descendant inLd1(y). We chooseτK′(t1) u.a.r. fromL1

d1
.

If L1
d1

is empty, the move is rejected since the move is
not reversible. Once the initial observation is chosen, we
then choose the subsequent observations for the trackτK′ .
For i = 2, 3, . . ., we choosedi from ζ and chooseτK′(ti)
u.a.r. fromLdi

(τK′(ti−1))\{τk(ti−1 +di) : k = 1, . . . ,K}
unless this set is empty. But, fori = 3, 4, . . ., the process
of adding observations toτK′ terminates with probability
γ, where0 < γ < 1. If |τK′ | ≤ 1, the move is rejected. We
then propose this modified partition whereω′1 = ω1∪{τK′}
andω′0 = {τ0\τK′}. For a death move, we simply choosek
u.a.r. from{1, . . . ,K} and delete thek-th track and propose
a new partition whereω′1 = ω1 \{τk} andω′0 = {τ0∪τk}.

TO APPEAR IN IEEE CONFERENCE ON DECISION AND CONTROL 2004 5

B. Split and Merge Moves (Fig. 2,c ↔ d)

For a split move, we selectτs(tr) u.a.r. from{τk(ti) :
|τk| ≥ 4, i = 2, . . . , |τk| − 2, k = 1, . . . ,K}. Then we split
the track τs into τs1 and τs2 such thatτs1 = {τs(ti) :
i = 1, . . . , r} and τs2 = {τs(ti) : i = r + 1, . . . , |τs|}.
The modified track partition becomesω′1 = (ω1 \ {τs}) ∪
{τs1} ∪ {τs2} and the false alarm partitionω′0 is updated
accordingly. For a merge move, we consider the set

M = {(τk1(tf), τk2(t1)) : τk2(t1) ∈ Lt1−tf
(τk1(tf)),

f = |τk1 | for k1 6= k2, 1 ≤ k1, k2 ≤ K}.

We select a pair(τs1(tf), τs2(t1)) u.a.r. fromM . The tracks
are combined into a single trackτs = τs1 ∪ τs2 . Then we
propose a new partition whereω′1 = (ω1\({τs1}∪{τs2}))∪
{τs} andω′0 with appropriate rearrangements.

C. Extension and Reduction Moves (Fig. 2,e ↔ f)

In a track extension move, we select a trackτ u.a.r. from
K available tracks inω. We reassign observations forτ after
the disappearance timet|τ | as done in the track birth move.
For a track reduction move, we select a trackτ u.a.r. from
K available tracks inω andr u.a.r. from{2, . . . , |τ | − 1}.
We shorten the trackτ to {τ(t1), . . . , τ(tr)} by removing
the observations assigned toτ after the timetr+1.

D. Track Update Move (Fig. 2,g ↔ h)

In a track update move, we select a trackτ u.a.r. from
K available tracks inω. Then we pick r u.a.r. from
{1, 2, . . . , |τ |} and reassign observations forτ after the time
tr as done in the track birth move.

E. Track Switch Move (Fig. 2,i ↔ j)

For a track switch move, we select a pair of observa-
tions (τk1(tp), τk2(tq)) from two different tracks such that,
τk1(tp+1) ∈ Ld(τk2(tq)) and τk2(tq+1) ∈ Ld′(τk1(tp)),
whered = tp+1 − tq, d′ = tq+1 − tp and 0 < d, d′ ≤ d̄.
Then we let

τk1 = {τk1(t1), . . . , τk1(tp), τk2(tq+1), . . . , τk2(t|τk2 |)}
τk2 = {τk2(t1), . . . , τk2(tq), τk1(tp+1), . . . , τk1(t|τk1 |)}.

Theorem 1:Suppose that0 < pz, pd < 1 andλb, λf > 0.
If ζ(d) > 0, for all d ∈ {1, . . . , d̄}, then the Markov chain
designed by Algorithm 1 is irreducible.

Proof: The birth and death moves are sufficient to
illustrate the irreducibility of the chain. Since0 < pz, pd < 1
andλb, λf > 0, P (ω|Y) > 0 for all ω ∈ Ω. Take an arbitrary
partition ω ∈ Ω, sayω = {τ0, τ1, . . . , τK}. Now consider
the partitionω′ ∈ Ω, such thatω′ = {τ ′0}, i.e.,ω′ assigns all
observations as false alarms. Sinceω is arbitrary, the chain
is irreducible if the chain can move fromω′ to ω and fromω
to ω′. For the move fromω′ to ω, considerK consecutive
birth moves:ω0 = ω′, ω1 = {{τ ′0 \ τ1}, τ1}, . . . , ωK =
{{τ ′0 \{∪K

i=1τi}}, τ1, . . . , τK} = ω. Sinceω ∈ Ω, all tracks
τk are legal, i.e.,τk satisfies the constraints described in Sec-
tion II-B and, fori = 1, . . . , |τk|−1, τk(ti+1) ∈ Ld(τk(ti))
for 1 ≤ d = ti+1− ti ≤ d̄. Thus,ωk ∈ Ω for all k. Because

ζ(d) > 0 and all tracksτk are legal, the probability of
proposingτk at ωk−1 by the birth move is positive and
q(ωk, ωk+1) > 0. For the move fromω to ω′, consider
K consecutive death moves:ωK = ω, ωK−1, . . . , ω0 = ω′.
The probability of removing the trackτk at ωk by the death
move is positive andq(ωk+1, ωk) > 0. SinceP (ωk|Y) > 0
for all k, the chain can move fromω′ to ω and fromω to
ω′. Hence, the chain is irreducible.

The Markov chain designed by Algorithm 1 is irreducible
(Theorem 1) and aperiodic since there is always a positive
probability of staying at the current state in the track
update move. In addition, the transitions described in Algo-
rithm 1 satisfy the detailed balance condition since it uses
the Metropolis-Hastings kernel (3). Hence, by the ergodic
theorem, the chain converges to its stationary distribution.
Notice that the other moves are designed to improve the
performance of the algorithm.

IV. SIMULATION RESULTS

For the simulations we consider surveillance over a
rectangular region on a plane,R = [0, L]×[0, L] ⊂ R2. The
state vector isx = [x, y, ẋ, ẏ]T where (x, y) is a position
onR along the usualx andy axes and(ẋ, ẏ) is a velocity
vector. The linear system model (1) is used whereδ is an
interval between observations and

A(δ) =

 1 0 δ 0
0 1 0 δ
0 0 1 0
0 0 0 1

 G(δ) =

δ2

2
0

0 δ2

2
δ 0
0 δ

 C =

 1 0
0 1
0 0
0 0

T

The covariance matrices areQ = diag(100, 100) andR =
diag(25, 25).

The complexity of multiple-target tracking problems can
be measured by several metrics: (1) the intensity of the false
alarm rateλf ; (2) the detection probabilitypd; and (3) the
density of tracks. The problem gets more challenging with
increasingλf , decreasingpd, increasingK, and increasing
density of tracks. The number of tracks itself may not
make the problem more difficult if they are scattered apart.
The difficulty arises when there are many tracks that are
moving closely and crossing each other; this is when the
ambiguity of data association is greater. Hence, we only
consider situations in which tracks move very closely so we
can control the density of tracks by the number of tracks.
We study the performance of the MCMCDA algorithm
against the greedy algorithm and MHT by varying the
parameters listed above. The greedy algorithm is a batch-
mode nearest neighbor multiple-target tracking algorithm.
The algorithm first marks all observations as false alarms,
and then picks two unmarked observations at different times
to estimate an initial state. Then it forms a canditate track by
picking unmarked observations which are the nearest to the
predicted states for subsequent time steps. The candidate
track is validated as a track and observations associated
to the candidate track are marked if the marginal of the
candidate track exceeds a threshold. The process is repeated
until no more track can be found.

Based on our model described above, we have generated
different scenarios. In particular, in all cases, except for

TO APPEAR IN IEEE CONFERENCE ON DECISION AND CONTROL 2004 6

Fig. 3. NCA (left), ICAR (middle), and the estimation error in the number of tracks (right) as functions of a number of tracks

the online tracking, half of the new objects appear from
the left bottom quadrant ofR and the other half appear
from the right bottom quadrant. The actual initial positions
are chosen randomly from each quadrant. They all move
diagonally so each group of tracks crosses the other group
in the middle ofR. Also targets move very close to each
other and there are also crossovers within each group. The
situations we have used for simulations below include very
extreme cases and, in our opinion, such complex situations
have not appeared in the multiple-target tracking literatures.

Since the number of targets is not fixed, it is difficult to
compare algorithms using a standard criterion such as the
residual mean square error. Hence, we introduce two new
metrics to measure the effectiveness of each data association
algorithm. Letω∗ be the true partition with which the test
case was generated. Forω ∈ Ω, we represent the set of
all associations inω as SA(ω) = {(τ, tτi , tτi+1) : i =
1, . . . , |τ | − 1, τ ∈ ω}, wheretτi is the time at which the
track τ is observedi times. Let CA(ω) = {(τ, t, s) ∈
SA(ω) : τ(t) = τ∗(t), τ(s) = τ∗(s), τ∗ ∈ ω∗} be the set of
correct associations inω relative toω∗. The two new metrics
we will be using are the normalized correct associations
(NCA) and incorrect-to-correct association ratio (ICAR):

NCA(ω) =
|CA(ω)|
|SA(ω∗)|

(4)

ICAR(ω) =
|SA(ω)| − |CA(ω)|

|CA(ω)|
. (5)

NCA measures the ratio between the number of correct
associations and the number of associations in the true
partition while ICAR measures the number of incorrect
associations per correct association. We measure the per-
formance of each algorithm by NCA, ICAR, the estimation
error in the number of tracks,||ω∗| − |ω||, and the running
time of the algorithm.

Both MCMCDA and greedy algorithms are written in
C++ with Matlab interfaces. We have used the C++ imple-
mentation of MHT from [6]1, which implements pruning,
gating, clustering,N -scan-back logic andk-best hypothe-
ses. The parameters for MHT are fine-tuned so that it
gives similar performance when there are 10 targets: the
maximum number of hypotheses in a group is 1000, the

1http://www.ee.ucl.ac.uk/ ˜icox/

Fig. 4. Average running time vs. number of tracks

maximum track tree depth is 5, and the maximum Maha-
lanobis distance is 5.9. All simulations are run on a PC with
a 2.6-GHz Intel processor.

A. Experiment I (Number of Tracks)

In this experiment, we varyK from 5 to 100 (the actual
values ofK are 5, 10, 20, 30, 40, 50, 75 and 100). The
other parameters are held fixed:R = [0, 1000]× [0, 1000],
T = 10, λfV = 1, v̄ = 130 unit lengths per unit time.
The main focus of this experiment is to test the accuracy
of MCMCDA against other algorithms so the tracks are
detected at all times, however, we have setpd = .9 for
the prior calculation. We have also setd̄ = 1. Since all
tracks are observed, the number of observations increases
as the number of tracks increases. For each value ofK, we
randomly generated five tests. The results for MCMCDA
are the average values over 10 repeated runs and the initial
state is initialized with the greedy algorithm and 10,000
samples are used. The average NCAs, ICARs and the
estimation error in the numbers of tracks for three different
algorithms are shown in Fig. 3. The running times of
three algorithms are shown in Fig. 4 (the running time
of MCMCDA includes the initialization step). Although
the maximum number of hypotheses of 1000 per group
is a large number, with increasing numbers of tracks, the
performance of MHT deteriorates due to pruning. But both
greedy and MCMCDA keep good performance, although
the greedy algorithm detects a less number of tracks for

TO APPEAR IN IEEE CONFERENCE ON DECISION AND CONTROL 2004 7

largeK. In addition, the running times of both greedy and
MCMCDA are significantly less than that of MHT.

B. Experiment II (False Alarms)

Now the settings are the same as Experiment I but we
vary the false alarm rates while the number of tracks is
fixed at K = 10. The test cases for this experiment are
prepared as follows. We first generated five different random
scenarios each with 10 tracks. Then, we applied different
false alarm rates to generate test cases. The false alarm rates
are varied fromλfV = 1 to λfV = 100 with an increment of
10. 10,000 samples are used for MCMCDA and the results
for MCMCDA are the average values over 10 repeated
runs. The average NCAs, ICARs and the estimation error
in the numbers of tracks for three different algorithms at
different false alarm rates are shown in Fig. 5. It shows the
remarkable performance of MCMCDA at high false alarm
rates while the other two algorithms perform poorly. The
greedy algorithm scores higher in NCA than MCMCDA
but poorly in ICAR. In addition, it reports spurious tracks
at high false alarm rates. Notice that MHT does not make
any correct associations at high false alarm rates,λfV ≥ 80,
so ICARs for MHT atλfV ≥ 80 are not reported.

C. Experiment III (Detection Probability)

In this experiment we vary the detection probability
pd from .3 to .9 with an increment of .1 while keeping
the other parameters as the previous experiments except
K = 10, λfV = 1, T = 15 and d̄ = 5. Now the tracks
are not observed all the time. For each value ofpd, five
test cases are randomly generated and the average NCAs,
ICARs and the estimation error in the numbers of tracks
are shown in Fig. 6. For MCMCDA, we present two cases:
MCMC(15K) with 15,000 samples and MCMC(150K) with
150,000 samples. It shows that MCMCDA outperforms the
other algorithms at low detection probabilities. At high
detection probabilities, MHT scores higher than MCMCDA
but it reports a higher number of tracks, meaning that it
fragments tracks.

Although, in theory, MHT gives an optimal solution in
the sense of MAP, it performs poorly when the detection
probability is low or the false alarm rate is high due to
the heuristics such as pruning andN -scan-back techniques
used to reduce the complexity. The heuristics are required
parts of MHT in practice. Without the pruning andN -scan-
back logic, the problem complexity grows exponentially fast
even for a small problem. In practice, MHT with heuristics
works well when a few number hypotheses carry most
of the weight. When the detection probability is low or
the false alarm rate is high, there are many hypotheses
with low weights and there is no small set of dominating
hypotheses, so MHT cannot perform well. In addition, when
the detection probability is high, MHT again suffers from
a large number of observations. Another noticeable benefit
of the MCMCDA algorithm is that its running time can
be regulated by the number of samples and the number of
observations but the running time of MHT depends on the

TABLE I

PERFORMANCE OFONLINE MCMCDA TRACKER

RUNNING TIMES (RT) IN SECONDS

Number of samples
1,000 5,000

K NCA ICAR RT NCA ICAR RT
100 .95 .19 .06 .98 .13 .28
200 .94 .06 .09 .97 .05 .41
300 .92 .07 .11 .97 .05 .55

complexity of the problem instance and is not predictable
in advance.

D. Online MCMCDA Multiple-Target Tracker

The extension of MCMCDA to an online, real-time
tracking is a trivial task. We implement a sliding window
of size ws using Algorithm 1. At each time step, we
use the previous estimate to initialize MCMCDA and run
MCMCDA on the observations belonging to the current
window. A total of three test cases are generated: (case
1) 100 tracks, (case 2) 200 tracks and (case 3) 300 tracks.
The surveillance duration is increased toT = 1000 and
the surveillance region is nowR = [0, 10000]× [0, 10000].
The other parameters are:λfV = 10, pd = .9, d̄ = 3,
v̄ = 230 and ws = 10. The objects appear and disappear
at random in time and space so the number of tracks
changes in time. These test cases represent instances of
the general (discrete-time) multiple-target tracking problem.
The average NCAs and ICARs over the sliding window
and the average execution time per simulation time are
shown in Table I. Notice that MCMCDA achieves excellent
performance in all cases with less than one second of
execution time.

V. CONCLUSIONS

The general (discrete-time) multiple-target tracking prob-
lem is described and an MCMCDA algorithm is proposed.
Our MCMCDA tracker, a data association algorithm ca-
pable of initiating and terminating a varying number of
tracks, is flexible and can easily incorporate any domain
specific knowledge to make it more efficient. Instead of
searching over the whole solution space, the MCMC algo-
rithm randomly searches over the space where the posterior
is concentrated. Our simulation results show remarkable
performance of the MCMCDA algorithm under extreme
conditions such as a large number of targets in a dense
environment, low detection probabilities, and high false
alarm rates. We have shown that the algorithm can be
extended as an online, real-time algorithm with excellent
performance.

REFERENCES

[1] Y. Bar-Shalom and T.E. Fortmann.Tracking and Data Association.
Mathematics in Science and Engineering Series 179 Academic Press,
San Diego, CA, 1988.

[2] I. Beichl and F. Sullivan. The metropolis algorithm. InComputing
in Science and Engineering, volume 2(1), pages 65–69, 2000.

[3] N. Bergman and A. Doucet. Markov chain monte carlo data
association for target tracking. InIEEE Int. Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2000.

TO APPEAR IN IEEE CONFERENCE ON DECISION AND CONTROL 2004 8

Fig. 5. NCA (left), ICAR (middle), and the estimation error in the number of tracks (right) as functions of false alarm rate

Fig. 6. NCA (left), ICAR (middle), and the estimation error in the number of tracks (right) as functions of detection probability

[4] J.B. Collins and J.K. Uhlmann. Efficient gating in data association
with multivariate distributed states. InIEEE Trans. Aerospace and
Electronic Systems, volume 28(3), 1992.

[5] I.J. Cox. A review of statistical data association techniques for motion
correspondence. InInternational Journal of Computer Vision, volume
10(1), pages 53–66, 1993.

[6] I.J. Cox and S.L. Hingorani. An efficient implementation of reid’s
multiple hypothesis tracking algorithm and its evaluation for the
purpose of visual tracking. InInternational Conf. on Pattern
Recognition, pages 437–443, 1994.

[7] W.R. Gilks, S. Richardson, and D.J. Spiegelhalter.Markov Chain
Monte Carlo in Practice. Interdisciplinary Statistics Series. Chapman
and Hall, 1996.

[8] Timothy Huang and Stuart J. Russell. Object identification in a
bayesian context. InProceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, pages 1276–1283, 1997.

[9] M. Jerrum and A. Sinclair. The markov chain monte carlo method:
An approach to approximate counting and integration. In Dorit
Hochbaum, editor,Approximations for NP-hard Problems. PWS
Publishing, Boston, MA, 1996.

[10] Thomas Kurien. Issues in the design of practical multitarget tracking
algorithms. In Y. Bar-Shalom, editor,Multitarget-Multisensor Track-
ing: Advanced Applications. Artech House: Norwood, MA, 1990.

[11] C. L. Morefield. Application of 0-1 integer programming to mul-
titarget tracking problems. InIEEE Trans. on Automatic Control,
volume 22, pages 3:302–312, June 1971.

[12] K.G. Murty. An algorithm for rankning all the assignments in order
of increasing cost. InOperations Research, volume 16, pages 682–
687, 1968.

[13] Songhwai Oh, Jin Kim, and Shankar Sastry. A sampling-based
approach to nonparametric dynamic system identification and esti-
mation. InAmerican Control Conference, Boston, MA, June 2004.

[14] L.Y. Pao. Multisensor multitarget mixture reduction algorithms for
tracking. In Proc. AIAA Guidance, Navigation, and Control Conf.,
pages 28–37, Monterey, CA, Aug. 1993.

[15] Hanna Pasula, Stuart J. Russell, Michael Ostland, and Yaacov Ritov.
Tracking many objects with many sensors. InIJCAI-99, Stockholm,
1999.

[16] A.B. Poore. Multidimensional assignment and multitarget tracking.
In Partitioning Data Sets. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, volume 19, pages 169–196, 1995.

[17] D.B. Reid. An algorithm for tracking multiple targets. InIEEE

Transaction on Automatic Control, volume 24(6), pages 843–854,
December 1979.

[18] R.W. Sittler. An optimal data association problem on surveillance
theory. InIEEE Trans. on Military Electronics, volume MIL-8 (Apr),
pages 125–139, April 1964.

[19] R. Streit and T. Luginbuhl. Maximum likelihood method for
probabilistic multi-hypothesis tracking. InProc. SPIE, volume 2235,
pages 394–405, April 1994.

[20] L.G. Valiant. The complexity of computing the permanent. In
Theoretical Computer Science, volume 8, pages 189–201, 1979.

