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Abstract—In this work we consider the problem of pursuit  the area of interest [21]. This constraint makes designing
evasion games (PEGs) where a group of pursuers is required a cooperative pursuit algorithm harder because lack of

to detect, chase and capture a group of evaders with the complete observability only allows for suboptimal pursuit
aid of a sensor network in minimum time. Differently from

standards PEGs where the environment and the location of policies. See F'gur? Z'L(Ieft). Furthermore,. a smart evz_iders
evaders is unknown and a probabilistic map is built based on makes the map-building process dynamic since their lo-
the pursuer’s onboard sensors, here we consider a scenario cation changes over time. The map-learning phase is, by
where a sensor network, previously deployed in the region jtself, time-consuming and computationally intensive even

82:?2&?%igaiﬂfgrer;%?itotnh?oF;Le:ep)ﬁﬁgug];sma\gpgv\\;ghply(r:é%% saé‘d for simple two-dimensional rectilinear environments [5].
a general framework for the design of a hierarchical control Moreover_,_ Inaccurate sensors compllpate this process and
architecture that exploits the advantages of a sensor network @ probabilistic approach is often required [21].
by combining both centralized and decentralized real-time
control algorithms. We also propose a coordination scheme for
the pursuers to minimize the time-to-capture of all evaders. In
particular, we focus on PEGs with sensor networks orbiting
In space for artificial space debris detection and removal.
Index Terms—Sensor networks, pursuit evasion games,
vehicle coordination, space vehicles, space debris

I. INTRODUCTION

Recent developments in integrated circuits, radio com
munication and sensor technology have provided us with, ;1  sensor visibility in PEGs without SN (left) and with SN (right).
a wealth of inexpensive, customizable, small, embeddegdots correspond to the SN nodes, each provided with a vehicle detection
sensor systems, computers and wireless radios. Thereforensor. Courtesy of [20]
deploying and maintaining a network of thousands of
nodes, each provided with its own sensors, small computer
and wireless radio, and capable to communicate witfb
neighboring nodes, is becoming feasible from a technologﬁ
ical as well as an economical perspective. Such systems
commonly known as Sensor Networks (SNs) are gainin
a role of importance in the research community sinc
they promise an unprecedented quantity and quality o
information unobtainable with current technology [7].

In this work, we are interested in adopting SNs for Pur- u
suit Evasion Games (PEGSs). PEGs are a mathematical ab:

The use of a sensor network can greatly improve the
verall performance of a PEG [20]. In fact, with sensor
etworks, complete visibility of the field and communi-
ation over a long radius is possible. See Figure 1(right).
Elobal pursuit policies can then be used to efficiently find
e optimal solution regardless of the level of intelligence
f the evader. Also, with a sensor network, the number
of pursuers needed is likely a function exclusively of the
mber of evaders and not to the size of the field.
However, SNs pose a series of novel problems that

in the pursuit of one or more evaders [9] [11]. Typical
examples are search and rescue operations, surveillance,
calization and tracking of moving parts in a warehouse, an
search and capture missions. In some cases, the evaders
actively avoiding detection as in capture missions, where
in other cases their motion is approximately random as iré
rescue operations. In general PEGs the environment a
the location of evaders is unknown. In this framework,
an additional map-learning phase is required to preced
the pursuit phase. In fact, pursuers have a relatively sm
detection range. They usually employ computer vision of,
ultrasonic sensors, providing only local observability over,

a multi-hop wireless communications to dedicated hubs
r _supernodes where high level signal processing and
suing algorithms are implemented. As a consequence
ndom packet delays, missing observations, false alarm,
nsor noise, and imprecise local estimation of location of
aders is very common [20].
In this paper, we propose a general framework for
nalyzing and designing control algorithms for PEGs which
kes into account the limitations and exploits the ad-
antages of SNs. Although, the proposed framework and
control architecture are sufficiently general to be applied to
*This work was partially performed as part of DyMND (Dynamic dlﬁerent PEGs scenarios, we developed and tested our al-
Meshes of Networked Devices) project of Lockheed Martin Space Sysd0rithms on a specific instance of PEGs and SNs for Earth’s
tems Company funded by DARPA NEST [contract n. F33615-02-C4033jspace monitoring and debris detection. In the past decades,

gensor measurements within the network need to be relayed



military, scientific and commercial space missions have Let Rs € R be the sensing range. If there is an object
created a considerable amount of space debris which &t «x € R, each sensor within radiuBs from x detects
like wandering bullets endangering future space missionghe presence of the object with the detection probability
Today’s radar-based surveillance systems can only detept. The detection of an object by the sensas recorded
and track objects that are larger thidrm in size, which by the sensor’s signal strength;, = m + w;,
account for only few percents of total space debris weightwhereq, 3 and~ are constants specific to the sensor type
Even debris of jUSt the size of few millimeters can WrECkand they are normalized such that has the standard
a mission [10]. Sensor networks could be efficaciouslyGaussian distribution. This signal-strength based sensor
deployed in space to detect and track centimeter and subnodel is general for sensors available in sensor networks,
centimeter debrls, and then dedicated space VethIeS, aCtl@gch as acoustic and magnetic sensors, and has been used
as space vacuum cleaners, could chase and remove thegggyuently [12], [13], [14]. For each if z; > 1, wheren is
debris before they enter safe regions for space missiongthreshold set for appropriate values of detection and false-
(see Figure 2). This space scenario can be well formulategositive probabilities, the node transmits to its neigh-
analyzed as a PEG with SN, where the debris are thgoring nodes, which are at mogfzs away froms;, and
evaders and the space vehicles are the pursuers. listens to incoming messages from #&s neighborhood.

Note that this approach is similar to the leader election
Forbidden region Sensor Netwgrk I scheme in [13] and we assume thiat > 2Rs. However,

I - e (0] ) this approach may cause some missing observations if there
B ® «° is more than one object in this disk of radi@gs. A
Artificial I . . .
Debris \(? 9 %. better approach to fuse local data is required and. we will
= » I address this issue in our future work. For the nodé
z; is the larger than all incoming messages, .. ., zi,_,,
$ . and z;, = z;, then the position of an object is estimated
! 6] &\* . asz; = Zle Zz‘jsij/Z?ﬂ z;;. Thenz; is transmitted to
s e 1 © the supernodey(i) via the shortest pathp(i). If z; is
! o . not the largest compared to the incoming messages, the
I o® & °p nodei does nothing and goes back to the sensing mode.
. - ® " Although each sensor cannot give an accurate estimate of
1 object’s position, as more sensors collaborate, the accuracy
] ] / of estimates improves [17]. The collaboration of sensors
Leaking perimeter makes the system more robust against node failures and
Position/Velocity we can increase the detection probability and decrease the
Debris collectors vehicles_:*g’ Estimates from SN false alarm rate by collaboration. o
L A transmission along the edge;,s;) fails indepen-
Fig. 2. PEGs scenario for Earth’s space monitoring, artificial debrisdently with probabilitypre and th-e message never re-aCheS
detection and collection. ’ a supernode. So we can consider transmission failure as
another form of a missing observation.Hfis the number
of hops required to relay data from a sensor node to its
supernode, the probability of sucessful transmission decays
II. SySTEM MODELING exponentially a% increases. To overcome this problem, we
In this section we introduce mathematical models forusek independent paths to relay data if the reporting sensor
the sensor network and for the dynamics of the pursuersode isk hops away from its supernode. The probability of
and evaders, which will be used to design and test contrauccessful communication from the reporting néde its
algorithms. supernodey(i) can be computed as— (1 — (1 — pte)k)k,
wherek = |sp(i)].
A Sen_sor Net.works . The (additional) communication delay is modeled by the
In this section, we describe the sensor network angegative binomial distribution. We assume each node has
sensor model used for simulations in Section VIII. &  he same probabilityge Of delaying a message. H; is
be the number of sensor nodes, including both supernodgge numper of delays occurred on the message originating
and regular nodes, deployed over the surveillance regioRom the sensoi. d. is distributed as
R C R?. We assume that each supernode can communicate | ’ (l)|
with its neighboring supernodes. Lete R be the location sp(i)| +d—1 sn(i d
of the i-th sensor node and lef = {s; : 1 < i < Ng}. p(d; = d) = < d )(1 — pae) P (pge)?. (1)
Let R; € R be the transmission range of a regular sensor
node. A pair of sensor nodesand j can communicate If the network is heavily loaded, the independence assump-
to each other if the Euclidean distange; — s;|| < R  tions on transmission failure and communication delay may
Let G = (S,E) be a communication graph such thatnot hold. However, the model is realistic under the moder-
(si,sj) € Eifand only if ||s;—s;|| < R;. Let Nss < Nsbe  ate conditions and we have chosen it for its simplicity.
the number of supernodes and ite S be the position . )
of the j-th supernode, forj = 1,.".., Nes Let g be the B. Vehicle Dynamics
assignment of each sensor to its nearest supernode suchn this work we assume pursuers and evaders are space-
that g(i) = j if [[s; — 8?“ = ming—1 . Nesl[si — 3|l FOr  crafts orbiting at an almost constant altitude and velocity

a nodei, if g(i) = j, then the shortest path from to s3  around the Earth. These vehicles are allowed to move on
in G is denoted bysp(i). the surface of the imaginary sphere whose radius is given



by the mean altitude. If we consider a framg attached IIl. CONTROL SYSTEM ARCHITECTURE

to this imaginary sphere which orbits with the same mean The goal of the control system architecture is to devise
velocity, then vehicles appear as they would move on &qordination and control algorithms to minimize the time
plane. Each vehicle is provided with four perpendicularequired to capture multiple evaders by multiple pursuers
monodirectional thrusters that generate forces along thgith the aid of the information acquired through the sensor
longitudinal and lateral axes of the vehicle body, and foutepyork. These algorithms need to take into account the
small differential thrusters that generate rotational torqugmitations arising from the sensor networks, such as packet
about the vertical axis. The actuation of the thrusters i$0ss, random delay of observations, data ambiguity, false
much faster than the dynamics of vehicle body, thereforgayms, and the constraints of vehicles dynamics, such
it can be assumed that thrusters can be controlled almogg imited thrust magnitude, energy budget, computational
instantaneously. The magnitude of the thruster output iSesoyrces, digital quantized input, measurement noise and
bounded and the total amount of energy expenditure availsyterng| perturbations.

able on each vehicles is limited. Damping in space iS \ye propose an architecture that relies on four key ideas.
negligible and therefore vehicle dynamics is purely inertialThe first idea is to use a hierarchical modular structure,

Mathematically, the vehicle dynamics can be written asypere each module is designed independently from the

follows: others to improve scalability and interpretability. The sec-
- b b ond idea is to use robust predictive control which tries to

miE = ug cos(d) — uy, sin(0) 2 predict evaders motion to coordinate pursuers accordingly

mij = u’; sin(6) +ug cos(f) (3) to minimize capture time. This approach can cope with
-- b random delays in the observations and packet loss, but

IO = ug @) it requires to take into account the uncertainties of the

. . . . . prediction which degrades as further in the future one tries
wherenm is mass of the vehicld, is the moment of inértia 1, predict. Therefore, it needs to be robust to prediction
relative to the vertical axisy, y, ¢ are thex —y position  orors The third idea is to use centralized coordination
and orientation of the vehicle relative to the inertial frameperformed by one of the pursuers or a specific unit in

3 H b b b 7
R,, respectively. The inputs;, u,, uy need to satisfy the  orqer 1o improve global performance, since the goal is

following constraints: to capture the “furthest” evader. Although this approach
requires communication among pursuers and possibly high

b b b
uz| < Us, fug] < Uy, ug| < Us ®) computational resources, it can greatly reduce capture

oo time of evaders. The last idea is to implement a purely
/0 (|“Ia)c(t)|2 + |“Z(t)|2 + ‘“g(’f)|2) dt < E (6)  (gistributed collision avoidance path follower controller on
each pursuer. Although the desired trajectory generated
whereU,,U,, Uy, E are constants that quantify the input by the centralized path planner are optimal and collision-
magnitude and the energy bounds. free, uncertainty and external disturbance can create critical
In the next sections, rather than the previous modes$ituations where one pursuer can collide with another. This
of vehicle dynamics, we will use the following abstract reactive controller will modify pursuer motion based on
model of vehicle dynamics for determining pursuer-to-onboard sensors to avoid collision while still trying to

evader assignment and coordinated path planning: follow the desired trajectory.
P=ug = ™) f f t Hr
Pursuer 1 Pursuer 2 Pursuer 3 Pursuer N thrusters
where the inputs satisfy the following constraints: Path Follower Path Follower Path Follower Path Follower

Uy

U, = ision-
o ) x b ) Collision-free desired
|u:c‘ S U:v = ) |uz| S U = (8) trajectories
\/im Y \/Em Path Planner
+o0 9 9 g i i Assignment of pursuersto evaders
/ (|u(d),’ (t)| + |UZ (t)| ) dt S EO = mE (9) '% Pursuer-to-evader
0 & Assignment —I# ’ " ot
evaders, position, velocity,
It should be clear that any trajectory generated according to c% MJP,G and estimation erfor bounds
the abstract dynamics (7) is feasible for the exact dynamics Target Tratking

MTT)

Local estimation of evaders
positions from sensor network

(2). In fact, given the input paifu?,u2) for the abstract
dynamics, we can compute the input lyor the exact dynamics  senoor network
(ub,ul) using the following transformation:

Fig. 3. Control Unit Architecture

¢ sin(0) + u cos(6)) (10)

Yy
= m(uy cos(f) — ug sin(0)) (11) Based on these ideas we propose an hierarchical control
architecture composed of four layers: thmultiple target
assuming that the orientation andgles known. Only the tracking (MTT)module, thepursuer-to-evader assignment
energy constraint (6) can be violated by the abstract modeinodule, thepath plannermodule, and theath followers
However in practiceuj(t)> < |ub(t)|* + |u}(¢)|* since modules, as shown in Fig. 3. The first three modules
generating a rotational torque requires much less energgside on one or few specialized structures with high com-
than generating a longitudinal or lateral thrust, and theputational power which collect global information about
vehicle does not need to change its orientation very ofterpursuers as well evaders position. These structures could

u, = mu

NS R SIS o

u



be some fixed base stations or some elected leaders frodefined as a path in space-time traveled by the target. In
pursuers themselves, which monitor the whole sensor netnost cases, there is no clear association between targets and
work or a very large fraction of it. Specifically, the MMT observations, requiring a solution to the data association
module collects the measurements from the sensor netwogkoblem to associate observations to targets.

which correspond to local estimates of evaders’ position. In sensor networks, we seek for an autonomous tracking
However, some of these measurements are dropped batgorithm which does not require a continuous monitoring
fore they arrive, most of them arrive with considerableby a human operator. We also need to consider the fol-
delay and, most importantly, they are not associated t@owing constraints on sensor networks. Due to the limited
any specific evader. This module uses this informatiorsupply of power, the multi-hop wireless ad-hoc commu-
to estimate the number of evaders moving in the sensdafication is used in sensor networks. In many cases, the
network, their predicted current position and velocity, andcommunication bandwidth is low and the communication
the uncertainty on the prediction in statistical terms. Thidinks are not reliable, causing transmission failures. In
information is then passed along with the current positiomaddition, due to the low communication bandwidth and
and velocity of each pursuer, to the pursuer-to-evades limited amount of memory, communication delays can
assignment module, which estimates the expected timeccur frequently. It is well known that communication
to capture from each pursuer to each evader. Based ag costlier than computation in sensor networks in terms
these estimates, this module assign one pursuer to org power usage [6]. Hence it is essential to fuse local
evader such that the estimated time to capture of the lasibservations before the transmission. Since the data as-
evader is minimized. Once the assignment is determinedociation problem is NP-hard [3], [18], we cannot expect
the path planner module determine the best trajectory foto solve it with only local information. But, at the same
each pursuer to minimize capture time for the assigneéime, we cannot afford to have a centralized algorithm
evader, while avoiding possible collisions among pursuerssince such solution cannot be scalable. In summary, we
i.e. these trajectories are collision-free trajectories. Themeed a simple and efficient tracking algorithm that is robust
each of these trajectories is transmitted to the corresponégainst the low detection probability and high false alarm
ing pursuer. Each pursuer is provided with its own pathrates; capable of initiating and terminating tracks; uses
follower controller that tries to track the desired trajectory.less memory; combines local information to reduce the
This controller receives information from onboard sensorgommunication load; and is scalable. Also it must be robust
and if on obstacle or another pursuer enter its sensinggainst transmission failures and communication delays.
region, it modifies its own trajectory trying to follow the But at the same time we want an algorithm that can provide
desired trajectory as close as possible, while maintaining a good solution and improve its solution toward the optimal
safe distance to avoid collisions. solution given an enough computation time.

Such a control architecture shares many similarities with The algorithm developed in our companion paper [17]
those currently used for air traffic management (ATM)is a general multiple-target tracking algorithm for sen-
systems [15], where multiple airplanes needs to be routegor networks which can systematically track an unknown
to the destination airports in minimum time while avoiding number of targets in the presence of false alarms and
collisions. These systems present an hierarchical approaghissing observations and robust against sensor localization
similar to the one proposed here. The major difference igrror, transmission failures and communication delays. The
that in our scenario the evaders are equivalent to movingigorithm is based on the efficient Markov chain Monte
airports whose motion is unknown. This adds substantiaCarlo (MCMC) data association algorithm which is capable
uncertainty and a frequent update of pursuers routes (traf tracking a varying number of targets [16]. It has been

jectories). demonstrated that the algorithm achieves remarkable per-
In the next sections we describe in detail the implemenformance compared to MHT under the extreme conditions,
tation of each module of the proposed architecture. such as a large number of targets in a dense environment,
low detection probabilities, and high false alarm rates [16].
IV. MULTIPLE TARGET TRACKING (MTT) In [17], the MCMC data association algorithm is extended

éla a hierarchical manner so that the algorithm becomes

We assume a sensor network is deployed over a bound Scalable and its robustness against sensor localization error
regionR € R™ and provide observations about the moving e . ganst se ¢ '
ansmission failures and communications delays is demon-

evaders. We consider the most general setup in which E;%
number of evaders and the states of evaders are unkno .rated.

In order to compute the control laws of the pursuers,

it is of paramount importance to estimate precisely the V. PURSUERTO-EVADER ASSIGNMENT

number of evaders and their states. The estimation problem

of multiple moving targets is known as multiple target In a scenario where multiple pursuers and evaders are
tracking. Multiple target tracking has been extensivelypresent, several assignments are possible and some criteria
studied in radar-based tracking and vision-based trackingeed to be chosen to optimize performance. In this work
[1], [4]. Under the most general setup, a varying number ofve focus on minimizing the time-to-capture of all evaders.
indistinguishable targets is moving around in a region withHowever, other criteria might be possible, such as mini-
continuous motions and the positions of moving targetsnization of pursuers energy while guaranteeing capture of
are sampled at random intervals. The measurements abaalt evaders or maximization of number of captured evaders
the positions are noisy, with detection probability less tharwithin a certain amount of time. Since evaders motion
one, and there is a noise background of spurious positiois not known, exact time to capture is not known either,
reports, i.e., false alarms. Targets arise at random in spatkerefore we need to define a metric to estimate the time-
and time. Each target persists independently for a randono-capture. We will use the following definition of time-to-
length of time and ceases to exist. A track of a target icapture:



Definition 1. Let (pe(to),ve(to)) € R? x R? the po- Therefore, although in principle minimum time control is
sition and velocity of a evader at time = ty, and attractive since it gives the best performance, it needs to
(pp(t1),vp(t1)) € R? x R? the position and velocity of pe modified to be able to cope with practical issues such
ﬁ}g“&ﬁgﬁ; L?Hltrirr]nefeT: rﬁle é;gér\;//vefo?Gmg%nl}re}sﬁ%-rc?gtggch as digital implementation of control feedback, quantization
the evader with the same velocity, assuming that the evad@f inputs, measurement and process noise. Let us first
will keep moving with constant velocity, i.e., consider a more realistic model of error dynamics. Since
the dynamics along the- and y-axes are decoupled, we

T. 2 mqin{T | pp(t1+T) = pe(t1+T), vp(t1+T) = ve(t1+T)}  simply consider the dynamics along one of the axis:

Wherepe(tl —|—T) = p(to)—F(tl +T—t0)1}(t0), ’Ue(f,l —|—T) = err1 = ep T uply+ 05U2T3 + 05wde2 (15)
v(to), and the pursuer moves according to its dynamics. Vg1 = Uk +upla+ wpTy (16)

This definition allow us to quantify time-to-capture in wheree;, = e, (kTy), vk = é.(kTy), ud = u2(kTy), Ty
an unambiguous way and, although evader can change the discretization time interval, andj, is an unknown
trajectories over time, it is a more accurate estimate tharexternal disturbance that models the fact that the evader has
for example, some metric based on the distance between thg@ unknown trajectory. Also we assume there is measure-
evader and the pursuer, since time-to-capture incorporategent noise so that the estimated error position and velocity
the dynamics of pursuers. Moreover, it is well-defined forare given by:
any arbitrary time delay, = ¢; — ¢y in the estimate of
evader position and velocity relative to current tire € = ert 2z (17)
Given this definition and the constraints on the dynamics O = v+ ng (18)
of the pursuer, it is possible to calculate explicitly the time- .
to-captureT,, as well as the input to the actuators of thewherez, andn; are the measurement noise for the error

pursuers as described in the next section. position and velocity respectively. _
o . As explained above, the implementation of feedback
A. Minimum Time-to-Capture Control given by (12) can give poor performance, even in ideal sce-

The computation of time-to-capture will be estimatednario where no external disturbance and no measurement

using the abstract model of pursuer dynamics given by (7noise is present. It is true that the smaller the discretization
and (8). If we define the position error between the pursuetime T is, the smaller the error between the theoretical
and the evader as(t) A y(t) — pe(t), then the time-to- and the true performance is. However, this is still unsatis-

capture problem is equivalent to the following optimization ctory and, even for very smally < T relative to the
capture time, the performance degradation is considerable.

problem: Recently, [8] and [22] solved the problem of minimum

MiNye (1),us (¢) T time optimal control for the discretized double and triple
‘ Ex(t) = us(t), é,(t) = uo(t) intergrator, respectively. In this case the difference relative

subject to o (t)] < U2, |us(t)| < ﬁ-; to the ideal case is negligible and it is possible to show that

eo(T) = éxg(“T) =, (T) = ¢,(T) =0 T¢digital < Te + 2T3. However, these'control still perform
poorly if implemented in a scenario where even small
Since the pursuer dynamics is decoupled along the twexternal disturbances and measurement noise are present
axes, the solution of this problem can be obtained directlysee Figure 4). Here we propose a robust minimum time
from the well known problem of minimum time control of feedback control that takes into account uncertainty about
a double integrator. The solution is given by a bang-bangxact motion and position of evader.
control that can be written in feedback form as follows: First, we consider bounded external disturbance
_ye If 2U%, > —eles] |wi| < W, and measurement noisey| < Z,|ng] < N,
7 % whereW, Z, N are positive scalars. The feedback control

o If 20U2%¢ — " h g ; .
ug(t) = _UO+-U’” r 25%6.}‘” < _e‘”'e“" (12)  input will be chosen based on the following min-max
zsign(cs) Uzea = —euleal optimization problem
0 If é,=e,=0 p P
The minimum time can be also be written in terms of the ui = min ( max Tew(€rs1, Vit1)
position and velocity error as follows: [ug|<U \ Jwi| SW, |2 <Z,|nge | <N 7 (
19
—épty/262—4Uge, If 2U%%, > —e,les] This is, in general, a nonlinear optimization prob?_em.
T o(ens é0) = — Ue e~z = —relFrl o However, thanks to the specific structure of the time-
' éoty/262+4U%€, : o-capture functionT, ., it is possible to show that the
e@\Cer Ca otherwise to-capture function ., it is possible to show that th
Ug (13) previous problem is equivalent to:
Similar equations can be written for theaxis, therefore up = min max (Tew(efy1:v041), Tealery1sVin))
the minimum time to capture is given by: N i<
+ ~ ~ o2 2
= e SupTy £ (0.5WTy + N1y + 2
Tc = maX(Tc,waTc,y) (14) ekiH A e d+05uk ’ (0 o ‘ ! o )
k+1  — Op +upTy £ (WTy+ N)

Despite its simplicity and apparent efficacy minimum-time Uk
control is rarely used since it very sensitive to modeling In the interest of space, derivations are not included in this
errors in the dynamics and in the implementation. In factwork and will be presented in a forthcoming technical pa-
even the apparently innocuous digital implementation ofper. The solution of the previous equation can be obtained
the feedback given in (12) can exhibit poor performanceanalytically by solving a quartic polynomial equation,
and input chattering even in absence of any kind of noisehowever, in realistic scenarios, the inpuf is quantized



and takes values from finite séf, = {Ui,...,U,}. In  is equal tol if pursuer: is assigned to evadgr and equal

this case, the solution of the previous problem could bao 0 otherwise. The assignment problem can therefore be

obtained by simply evaluating the time-to-capture for thosewritten formally as follows:

p input values and then choosing the minimizer. This is . N o

computationally efficient since the computation of time-to- Mz, ;e{0,1} HIbaXW:LwN(CZ;\g i) (20)

capture can be done in parallel for each value of the input subjectto >, @;; =1, ijl iy =1

and it involves only the evaluation of sums, multiplications f lated in th . . h .

and square roots. As b?)rmu ated in the prewg_us equlatlont,)lt e assignment
Figure 4 shows the performance of the robust minimun’T02!€M appears as a com inatorial problem.

; ; One simplegreedy assignmeralgorithm that tries to

time-to-capture control feedback for tracking of an evader s == .

which does not move on a straight line with Constantsolve the optimization problem above, is to look for the

velocity and position and velocity estimates of evader issmallest ime-fo-capture eniry in the matX assign the

affected by noise. It is compared with the discrete-timecorresponding pursuer-evader pair, and remove the corre-

minimum time controller proposed in [22] and [8]. Our Sgggg:gg (r)?v(\;ira:]rgsc,‘igléjz\rpg {r)o)r:’n (%G,T?tgwéclgﬂvﬁe
controller feedback design outperforms the discrete-tim(?ame rocess until each pursuer is as’si ned tg an evader
minimum time controller since the latter one does not take proce . P o o
into account process and measurement noise. Note hoythough it is straightforward and easy to implement, this

both controllers do not direct pursuers toward the actu 'If]ea rseuebdopgr;lgl narlr?é)r?tthri?/é:lt?]ceev&gre\o,rtesglrftigr?sgso nV;iT:ieer:
position of evader, but try to estimate future location an 9 y 9 9 '

therefore minimize the time-to-capture. the time-to-capture matrixC’ = ;) i . The greedy
. ‘ ‘ assignment would assign pursueto evaderl and pursuer
— True evader 2 to evader2, with time-to-capture of last evader equal to
—— Noisy evader . .. .
- - min-tme pursuer Tz = 4. However, the assignment that minimizes the
2L robust min—-time pursuer ||

time-to-capture of last evader {d,2) and (2,1), which
givesTy,a0 = 3.
. The optimization problem given in (20) can be reformu-
\ lated as dinear bottleneck assignmeptoblem and can be

¢ Initial solved with polynomial-time algorithm based on network

position flow theory. The actual implementation of these algorithms
goes beyond the scope of this paper and we address the
\ interested reader to the survey [2] and references therein.
Figure 5 compares the greedy assignment with the
] optimal linear bottleneck assignment for a scenario with
three pursuers and three evaders. The greedy assignment
i assign the closest pursuer-evader pair and in fact the first
evader is "captured” already at timie= 50 (top-right plot),

\ while according to the linear bottleneck assignment the

-10 -8 -6 -4 -2 0 2 4 same pursuer is assigned to the farthest evader. However,
at time ¢t = 75 all three evaders are captured by the

Fig. 4. Trajectories of pursuers and evaders on x-y plane. FeedbadRUrsuers employing the optimal assignment, while only two

control is based on noisy estimatai@ solid ling) of true evader position ~evaders are captured by the pursuers employing the greedy
(thick solid ling. The robust minimum time-to-capture feedback proposedassignmem (bottom-left plot)

in this paper dot-solid ling is compared with the discrete-time minimum ' . .
time-to-capture feedbackigshed ling proposed in [22] . When the number of pursuers and evaders is different,

different options are available. For example, if pursuers are
less numerous than the evaders, one could try to capture the
. . N, closest evaders and neglect the other— N,, evaders.
B. Assignment Algorithms If %ursuers are more numerous than the evaders, then extra
In the previous section, we presented a definition tgoursuers can be assigned to some evaders or the unassigned
compute the expected time-to-capture for a pursuer-evadey, — N. pursuers could stay in stand-by in case additional
pair and, as a byproduct, we also computed the robustvaders appear in a later time. The optimal choice in these
minimum-time control feedback. Therefore, given positionscases depends on the specific application and it will be
and velocities of all pursuers and evaders, it is possible tovestigated in a future work.
compute the time-to-capture matix = [c; ;] € RY»>*Ne,
where N, and N, are the total number of pursuers and VI. COLLISION-FREECOORDINATED PATH PLANNING
evaders, respectively, and the entry of the matrixC' cor- Once an assignment is chosen by the pursuer-to-evader
responds to the expected time-to-capture between puisueassignment module, the trajectories generated by the ro-
and evadey. When coordinating multiple pursuers to chasebust minimum time controller described in the previ-
multiple evaders, it is necessary to select an assignmerdus section are not guaranteed to be collision free, i.e.
Our objective is to select an assignment that minimizes th§z, () — x;(¢)|| > € for all imet, wherei, j are two differ-
expected time-to-capture afl evaders. Let us assume for ent pursuers andis related to the minimum safe distance.
now that we have the same number of pursuers and evadesthough the distributed path follower controller module
i.e. Np = Ne. described in the next section can overcome this problem
An assignment can be represented as a maXrix= by replanning on-line the trajectory to avoid collision,
[z;;] € RNexNe 'where the entryr; ; of the matrix X it possible to use global information about the location

2

-3F




=0 ] =25 ] =50 to-capture of last evader, after the collision-free replanning
algorithm, should not be much greater than the ideal time-
) ) . to-capture when collision free trajectories are not enforced.
. . ° o ® Moreover, the complexity of this algorithm is linear in
' 1 . the number of pursuer, i.€)(NV,A), since it requires the
& ) i solution of N — 1 optimization problem where only one
. ’ pursuer’s trajectory is designed at one time.
. N We are currently implementing the simultaneous and
’ sequential algorithms and results will be presented in a
future paper.

t=75 ) t=100 , @ t=125
. s y VIl. DISTRIBUTED PATH FOLLOWER CONTROLLER

The minimum time-to-capture control generates desir-
¢ | . * able trajectory pathy;(¢t) for each pursuet. In pursuit

| of the assigned evader, the pursuer may encounter other
pursuers or obstacles. We need to make sure that the
pursuer can reactively avoid collisions while following the
desirable trajectory path. We use the decentralized model
predictive control technique developed in [19] to generate
Fig. 5. Movie of evaders tracking on the x-y plane. Evadeigles) collision-avoiding path follower control laws. Let;(t)
move along straight lines with constant velocity. Pursuers using greedy afye the state of theé-th pursuer and;(t) be the control
signment algorithmdiamond$ and optimal linear bottleneck assignment f - Th he d l dzd' - - |
(square} are superimposed. or pursueri. Then the decentralize |screte-t|me79pt|ma
control problem is to find the optimal contr¢l. (¢)};_,,
whereT is the time horizon, such that

T
of pursuers and evaders available at the base stations of«\7 _ - (s (8) s (¢ (e (T+1
supernodes to generate pursuif-line trajectories that P ()} argmm;q’(‘m’( ) i(®)F g (@l T+1))

are collision-free. Finding the minimum time-to-capture, (21)
collision-free trajectories given a specified assignment is gubject to the dynamics of pursuery; (-) is the cost-to-go
hard problem, since it requires the solution/éf coupled and¢;((-) is the terminal cost. For each time stépwe
optimization problems. One possible approach would bgglye for{uz(t)}T_, from the stater;(k) and applyu: (k).

to use dynamic programming teimultaneouslydesign  For the next step+ 1, we repeat these steps from the state
these trajectories [15]. Unfortunately, the complexity of this;. (x. 4 1). The terminal cost is defined as

approac?vgrows exponentially with the number of pursuers, )

i.e. O(A%»), where A is an appropriate constant, thus =, = LN A T U

makin(g it ir)npractical for a large swarm of pursuers. %is (zi(T+1)) = 2 Wi(t) = Caat))” Po (1) = Ca(t)
One alternative approach is to solve this optimizationg, 5 symmetric positive-definite matrik,. The cost-to-go

problemsequentially Given an assignment, it is possible ;¢ decomposed into two parts

to compute the expected time-to-capture and the expected

trajectory for each pursuer-evader pair. These trajectories g, (x;(t),u;(t)) = ¢t (x;(t), u; (t)) + ¢ (wi(t), us(t)),

are not necessarily collision free. However, it is possible ) )

to order this assignment based on the expected time-tavhereq;(z;(t),u;(t)) is the cost of being away from the

capture. The sequential algorithm works as follows. Firstdesired path andf(z;(t), u(t)) is the cost of being close

the pursuer with the largest expected time-to-capture willo obstaclesq; is defined in the usual form

follow the trajectory generated by the minimum time-to-

capture controller. Second, this trajectory is frozen and theg! (z;(t), u;(t)) = %[(yi(t) — Cx;(t)TQ(yi(t) — Cxi(t))

pursuer with the second largest expected time-to-capture T

is required to capture its assigned evader while avoiding +ui(t)” Rui(t) |,

the first pursuer. This problem can be solved via dynami

programming [15] or via model predictive control [19] and

it has complexityO(A), since only one pursuer is involved

in this optimization problem. Then also this trajectory

is frozen, and the pursuer with the third largest time- N o

to-capture is required to chase its assigned evader whilg: ;. () (1)) = Z Kl # 4) )

avoiding the previous two pursuers. Once again, this is an’ = () - 2 ()" Qe (wilt) — a;(t))

optimization problem with complexity)(A), since only

one pursuer is involved in this optimization problem. Thewhere Q. is a symmetric positive-definite matrix arfd;

process is then continued similarly by incrementally freez-a constant determining the shape of the potential function.

ing pursuers trajectories till all pursuers’ trajectories are The optimization problem of Equation (21) is nonlinear,

generated. Although the sequential optimization algorithmherefore its solution is not guaranteed by any algorithm.

is only suboptimal, it is likely to give a good performance However, iterative gradient descent algorithms initialized

since the pursuers that need to change the most thewith the initial desired trajectory;(¢) has been found to

trajectory to avoid the other pursuers, are those which haduickly converge to a solution with very good performance.

the smallest expected time-to-capture. Therefore, the timéviore details can be found in [19].

(\:NhereQ and R are symmetric positive-definite matrices.
Suppose that there a®¥ obstacles, including other pur-
suers. We use the potential field method to compgitas




VIIl. SIMULATIONS to evaluate the trade-offs between the two approaches.

For simulations below, we consider the surveillance oveISO, the algorithms presented here can be extended more
a rectangular region on a plar®, = [0,100]2. The state figorously when there are more pursuers than evaders and
vector isz = [z, y, &, 9|7 where(z,y) ié a position inR coordinated maneuvering of pursuers allow the capture of

along the usuat andy axes andz, §) is a velocity vector.

"fast and smart” evaders similarly as observed in mobs of

The following linear dynamic and measurement models ardons hunting an agile pray.

used
Tyl — A((S)il}t + G(5)wt (22)
Yt = Cur+ oy, (1]
where § is a sampling intervalw; and v, are white 2
Gaussian noises with zero mean and covariagce=
diag(.15%,.15%) and R = diag(%s, 5), respectively, and .
1.0 6 0 20 1 017"
2
AO={0 o 1 o |Gw=] 0 Flo={g 5|
00 0 1 o9 0 0
[5]

The transmission and sensing rangesiare- 20 andRs =
5, respectively, which correspond to a SN of 400 nodes. Forg
the sensor model, we use= 2, vy =1 and(§ = 2(1 +
YRS). We usedpl, = .05 and pd = .05. The false alarms
are uniformly distributed oveRR and its rate is one false
alarm per time. For each sensor, the detection probability
is .95.

Figure 6 shows snapshots of the PEGs scenario With[B]
5 evaders and 5 pursuers. Note how the assignment is
dynamic and it is pursuers are reassigned as new evaderé]
appear or disappear in order to minimize the time-to-
capture of all evaders. [10]

[11]

(7]

[12]

s 8 8 3

[13]

[14]

[15]

Fig. 6. Snapshots of PEGs using SN x-y plane. Evadargd hollow
icong move within a sensor networksipall circleg. Pursuers gmall
filled icong using linear bottleneck assignment algorithm and optimal
linear bottleneck assignmergquare} chase evaders. The pursuer-evader
assignment is indicated using the same icon.

[16]
[17]

IX. CONCLUSION AND FUTURE WORK [18]

In this paper we presented a framework to analyze and
design algorithms for Pursuit Evasion Games with Sensor
Networks. We presented a mathematical formulation of!®]
sensor network and vehicle dynamics and a hierarchical
control architecture that exploits the benefits of using d20]
sensor network. We also proposed a series of algorithms
to combine both coordinated maneuvering and distributed
control of pursuers at different stages in order to minimize21]
time-to-capture of all evaders while guaranteeing safety and
collision free maneuvers of pursuers. [22]

Future work would include a more extensive comparison
between probabilistic PEGs with PEGs using SNs in order
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