
Swarm Coordination for Pursuit Evasion Games using
Sensor Networks∗

Luca Schenato, Songhwai Oh and Shankar Sastry
Dept. of Electrical Engineering and Computer Sciences

University of California at Berkeley
333 Cory Hall, Berkeley, CA 94720, U.S.A.
{lusche|sho|sastry}@eecs.berkeley.edu

Prasanta Bose
Modeling Simulation and Information Sciences Dept.

Adv. Tech. Center, Lockheed Martin Space Systems Company
3251 Hanover St., Palo Alto, CA, U.S.A.

prasanta.bose@lmco.com

Abstract— In this work we consider the problem of pursuit
evasion games (PEGs) where a group of pursuers is required
to detect, chase and capture a group of evaders with the
aid of a sensor network in minimum time. Differently from
standards PEGs where the environment and the location of
evaders is unknown and a probabilistic map is built based on
the pursuer’s onboard sensors, here we consider a scenario
where a sensor network, previously deployed in the region
of concern, can detect the presence of moving vehicles and
can relay this information to the pursuers. Here we propose
a general framework for the design of a hierarchical control
architecture that exploits the advantages of a sensor network
by combining both centralized and decentralized real-time
control algorithms. We also propose a coordination scheme for
the pursuers to minimize the time-to-capture of all evaders. In
particular, we focus on PEGs with sensor networks orbiting
in space for artificial space debris detection and removal.

Index Terms— Sensor networks, pursuit evasion games,
vehicle coordination, space vehicles, space debris

I. I NTRODUCTION

Recent developments in integrated circuits, radio com-
munication and sensor technology have provided us with
a wealth of inexpensive, customizable, small, embedded
sensor systems, computers and wireless radios. Therefore,
deploying and maintaining a network of thousands of
nodes, each provided with its own sensors, small computer
and wireless radio, and capable to communicate with
neighboring nodes, is becoming feasible from a technolog-
ical as well as an economical perspective. Such systems,
commonly known as Sensor Networks (SNs) are gaining
a role of importance in the research community since
they promise an unprecedented quantity and quality of
information unobtainable with current technology [7].

In this work, we are interested in adopting SNs for Pur-
suit Evasion Games (PEGs). PEGs are a mathematical ab-
straction arising from numerous situations which addresses
the problem of controlling a swarm of autonomous agents
in the pursuit of one or more evaders [9] [11]. Typical
examples are search and rescue operations, surveillance, lo-
calization and tracking of moving parts in a warehouse, and
search and capture missions. In some cases, the evaders are
actively avoiding detection as in capture missions, whereas
in other cases their motion is approximately random as in
rescue operations. In general PEGs the environment and
the location of evaders is unknown. In this framework,
an additional map-learning phase is required to precede
the pursuit phase. In fact, pursuers have a relatively small
detection range. They usually employ computer vision or
ultrasonic sensors, providing only local observability over

∗This work was partially performed as part of DyMND (Dynamic
Meshes of Networked Devices) project of Lockheed Martin Space Sys-
tems Company funded by DARPA NEST [contract n. F33615-02-C4033]

the area of interest [21]. This constraint makes designing
a cooperative pursuit algorithm harder because lack of
complete observability only allows for suboptimal pursuit
policies. See Figure 1(left). Furthermore, a smart evaders
makes the map-building process dynamic since their lo-
cation changes over time. The map-learning phase is, by
itself, time-consuming and computationally intensive even
for simple two-dimensional rectilinear environments [5].
Moreover, inaccurate sensors complicate this process and
a probabilistic approach is often required [21].

Fig. 1. Sensor Visibility in PEGs without SN (left) and with SN (right).
Dots correspond to the SN nodes, each provided with a vehicle detection
sensor. Courtesy of [20]

The use of a sensor network can greatly improve the
overall performance of a PEG [20]. In fact, with sensor
networks, complete visibility of the field and communi-
cation over a long radius is possible. See Figure 1(right).
Global pursuit policies can then be used to efficiently find
the optimal solution regardless of the level of intelligence
of the evader. Also, with a sensor network, the number
of pursuers needed is likely a function exclusively of the
number of evaders and not to the size of the field.

However, SNs pose a series of novel problems that
need to be considered to fully exploit its potential. These
problems arise from the networked nature of SNs. In fact,
sensor measurements within the network need to be relayed
via multi-hop wireless communications to dedicated hubs
or supernodes where high level signal processing and
pursuing algorithms are implemented. As a consequence
random packet delays, missing observations, false alarm,
sensor noise, and imprecise local estimation of location of
evaders is very common [20].

In this paper, we propose a general framework for
analyzing and designing control algorithms for PEGs which
takes into account the limitations and exploits the ad-
vantages of SNs. Although, the proposed framework and
control architecture are sufficiently general to be applied to
different PEGs scenarios, we developed and tested our al-
gorithms on a specific instance of PEGs and SNs for Earth’s
space monitoring and debris detection. In the past decades,

military, scientific and commercial space missions have
created a considerable amount of space debris which is
like wandering bullets endangering future space missions.
Today’s radar-based surveillance systems can only detect
and track objects that are larger than10cm in size, which
account for only few percents of total space debris weight.
Even debris of just the size of few millimeters can wreck
a mission [10]. Sensor networks could be efficaciously
deployed in space to detect and track centimeter and sub-
centimeter debris, and then dedicated space vehicles, acting
as space vacuum cleaners, could chase and remove these
debris before they enter safe regions for space missions
(see Figure 2). This space scenario can be well formulated
analyzed as a PEG with SN, where the debris are the
evaders and the space vehicles are the pursuers.

Forbidden region Sensor Network

Leaking perimeter

Artificial
Debris

Position/Velocity
Estimates from SNDebris collectors vehicles

Fig. 2. PEGs scenario for Earth’s space monitoring, artificial debris
detection and collection.

II. SYSTEM MODELING

In this section we introduce mathematical models for
the sensor network and for the dynamics of the pursuers
and evaders, which will be used to design and test control
algorithms.

A. Sensor Networks

In this section, we describe the sensor network and
sensor model used for simulations in Section VIII. LetNs
be the number of sensor nodes, including both supernodes
and regular nodes, deployed over the surveillance region
R ⊂ R2. We assume that each supernode can communicate
with its neighboring supernodes. Letsi ∈ R be the location
of the i-th sensor node and letS = {si : 1 ≤ i ≤ Ns}.
Let Rt ∈ R be the transmission range of a regular sensor
node. A pair of sensor nodesi and j can communicate
to each other if the Euclidean distance‖si − sj‖ ≤ Rt.
Let G = (S, E) be a communication graph such that
(si, sj) ∈ E if and only if ‖si−sj‖ ≤ Rt. Let Nss¿ Ns be
the number of supernodes and letss

j ∈ S be the position
of the j-th supernode, forj = 1, . . . , Nss. Let g be the
assignment of each sensor to its nearest supernode such
that g(i) = j if ‖si − ss

j‖ = mink=1,...,Nss‖si − ss
k‖. For

a nodei, if g(i) = j, then the shortest path fromsi to ss
j

in G is denoted bysp(i).

Let Rs ∈ R be the sensing range. If there is an object
at x ∈ R, each sensor within radiusRs from x detects
the presence of the object with the detection probability
pd. The detection of an object by the sensori is recorded
by the sensor’s signal strength,zi = β

1+γ‖si−x‖α + wi,
whereα, β andγ are constants specific to the sensor type
and they are normalized such thatwi has the standard
Gaussian distribution. This signal-strength based sensor
model is general for sensors available in sensor networks,
such as acoustic and magnetic sensors, and has been used
frequently [12], [13], [14]. For eachi, if zi ≥ η, whereη is
a threshold set for appropriate values of detection and false-
positive probabilities, the node transmitszi to its neigh-
boring nodes, which are at most2Rs away from si, and
listens to incoming messages from its2Rs neighborhood.
Note that this approach is similar to the leader election
scheme in [13] and we assume thatRt ≥ 2Rs. However,
this approach may cause some missing observations if there
is more than one object in this disk of radius2Rs. A
better approach to fuse local data is required and we will
address this issue in our future work. For the nodei, if
zi is the larger than all incoming messages,zi1 , . . . , zik−1 ,
and zik

= zi, then the position of an object is estimated
as ẑi =

∑k
j=1 zij sij /

∑k
j=1 zij . Then ẑi is transmitted to

the supernodeg(i) via the shortest pathsp(i). If zi is
not the largest compared to the incoming messages, the
node i does nothing and goes back to the sensing mode.
Although each sensor cannot give an accurate estimate of
object’s position, as more sensors collaborate, the accuracy
of estimates improves [17]. The collaboration of sensors
makes the system more robust against node failures and
we can increase the detection probability and decrease the
false alarm rate by collaboration.

A transmission along the edge(si, sj) fails indepen-
dently with probabilitypte and the message never reaches
a supernode. So we can consider transmission failure as
another form of a missing observation. Ifk is the number
of hops required to relay data from a sensor node to its
supernode, the probability of sucessful transmission decays
exponentially ask increases. To overcome this problem, we
usek independent paths to relay data if the reporting sensor
node isk hops away from its supernode. The probability of
successful communication from the reporting nodei to its
supernodeg(i) can be computed as1− (

1− (1− pte)k
)k

,
wherek = |sp(i)|.

The (additional) communication delay is modeled by the
negative binomial distribution. We assume each node has
the same probabilitypde of delaying a message. Ifdi is
the number of delays occurred on the message originating
from the sensori, di is distributed as

p(di = d) =
(|sp(i)|+ d− 1

d

)
(1− pde)|sp(i)|(pde)d. (1)

If the network is heavily loaded, the independence assump-
tions on transmission failure and communication delay may
not hold. However, the model is realistic under the moder-
ate conditions and we have chosen it for its simplicity.

B. Vehicle Dynamics

In this work we assume pursuers and evaders are space-
crafts orbiting at an almost constant altitude and velocity
around the Earth. These vehicles are allowed to move on
the surface of the imaginary sphere whose radius is given

by the mean altitude. If we consider a frameRo attached
to this imaginary sphere which orbits with the same mean
velocity, then vehicles appear as they would move on a
plane. Each vehicle is provided with four perpendicular
monodirectional thrusters that generate forces along the
longitudinal and lateral axes of the vehicle body, and four
small differential thrusters that generate rotational torque
about the vertical axis. The actuation of the thrusters is
much faster than the dynamics of vehicle body, therefore
it can be assumed that thrusters can be controlled almost
instantaneously. The magnitude of the thruster output is
bounded and the total amount of energy expenditure avail-
able on each vehicles is limited. Damping in space is
negligible and therefore vehicle dynamics is purely inertial.
Mathematically, the vehicle dynamics can be written as
follows:

mẍ = ub
x cos(θ)− ub

y sin(θ) (2)

mÿ = ub
x sin(θ) + ub

y cos(θ) (3)

Iz θ̈ = ub
θ (4)

wherem is mass of the vehicle,Iz is the moment of inertia
relative to the vertical axis,x, y, θ are thex − y position
and orientation of the vehicle relative to the inertial frame
Ro, respectively. The inputsub

x, ub
y, ub

θ need to satisfy the
following constraints:

|ub
x| ≤ Ux, |ub

x| ≤ Uy, |ub
x| ≤ Uθ (5)∫ +∞

0

(|ub
x(t)|2 + |ub

y(t)|2 + |ub
θ(t)|2

)
dt ≤ E (6)

whereUx, Uy, Uθ, E are constants that quantify the input
magnitude and the energy bounds.

In the next sections, rather than the previous model
of vehicle dynamics, we will use the following abstract
model of vehicle dynamics for determining pursuer-to-
evader assignment and coordinated path planning:

ẍ = uo
x, ÿ = uo

y (7)

where the inputs satisfy the following constraints:

|uo
x| ≤ Uo

x =
Ux√
2m

, |ub
x| ≤ Uo

y =
Uy√
2m

(8)

∫ +∞

0

(|uo
x(t)|2 + |uo

y(t)|2) dt ≤ Eo = mE (9)

It should be clear that any trajectory generated according to
the abstract dynamics (7) is feasible for the exact dynamics
(2). In fact, given the input pair(uo

x, uo
y) for the abstract

dynamics, we can compute the input for the exact dynamics
(ub

x, ub
y) using the following transformation:

ub
x = m(uo

y sin(θ) + uo
x cos(θ)) (10)

ub
y = m(uo

y cos(θ)− uo
x sin(θ)) (11)

assuming that the orientation angleθ is known. Only the
energy constraint (6) can be violated by the abstract model.
However in practice|ub

θ(t)|2 ¿ |ub
x(t)|2 + |ub

y(t)|2 since
generating a rotational torque requires much less energy
than generating a longitudinal or lateral thrust, and the
vehicle does not need to change its orientation very often.

III. C ONTROL SYSTEM ARCHITECTURE

The goal of the control system architecture is to devise
coordination and control algorithms to minimize the time
required to capture multiple evaders by multiple pursuers
with the aid of the information acquired through the sensor
network. These algorithms need to take into account the
limitations arising from the sensor networks, such as packet
loss, random delay of observations, data ambiguity, false
alarms, and the constraints of vehicles dynamics, such
as limited thrust magnitude, energy budget, computational
resources, digital quantized input, measurement noise and
external perturbations.

We propose an architecture that relies on four key ideas.
The first idea is to use a hierarchical modular structure,
where each module is designed independently from the
others to improve scalability and interpretability. The sec-
ond idea is to use robust predictive control which tries to
predict evaders motion to coordinate pursuers accordingly
to minimize capture time. This approach can cope with
random delays in the observations and packet loss, but
it requires to take into account the uncertainties of the
prediction which degrades as further in the future one tries
to predict. Therefore, it needs to be robust to prediction
errors. The third idea is to use centralized coordination
performed by one of the pursuers or a specific unit in
order to improve global performance, since the goal is
to capture the “furthest” evader. Although this approach
requires communication among pursuers and possibly high
computational resources, it can greatly reduce capture
time of evaders. The last idea is to implement a purely
distributed collision avoidance path follower controller on
each pursuer. Although the desired trajectory generated
by the centralized path planner are optimal and collision-
free, uncertainty and external disturbance can create critical
situations where one pursuer can collide with another. This
reactive controller will modify pursuer motion based on
onboard sensors to avoid collision while still trying to
follow the desired trajectory.

Multiple
Target Tracking

(MTT)

Pursuer-to-evader
Assignment

Path Planner

Path Follower

Pursuer 1

Path Follower

Pursuer 2

Path Follower

Pursuer 3

Path Follower

Pursuer N

B
as

e
St

at
io

n(
s)

Local estimation of evaders
positions from sensor network

evaders, position, velocity,
and estimation error bounds

Assignment of pursuers to evaders

Collision-free desired
trajectories

Input to
pursuer
thrusters

Sensor network

Fig. 3. Control Unit Architecture

Based on these ideas we propose an hierarchical control
architecture composed of four layers: themultiple target
tracking (MTT)module, thepursuer-to-evader assignment
module, thepath plannermodule, and thepath followers
modules, as shown in Fig. 3. The first three modules
reside on one or few specialized structures with high com-
putational power which collect global information about
pursuers as well evaders position. These structures could

be some fixed base stations or some elected leaders from
pursuers themselves, which monitor the whole sensor net-
work or a very large fraction of it. Specifically, the MMT
module collects the measurements from the sensor network
which correspond to local estimates of evaders’ position.
However, some of these measurements are dropped be-
fore they arrive, most of them arrive with considerable
delay and, most importantly, they are not associated to
any specific evader. This module uses this information
to estimate the number of evaders moving in the sensor
network, their predicted current position and velocity, and
the uncertainty on the prediction in statistical terms. This
information is then passed along with the current position
and velocity of each pursuer, to the pursuer-to-evader
assignment module, which estimates the expected time
to capture from each pursuer to each evader. Based on
these estimates, this module assign one pursuer to one
evader such that the estimated time to capture of the last
evader is minimized. Once the assignment is determined,
the path planner module determine the best trajectory for
each pursuer to minimize capture time for the assigned
evader, while avoiding possible collisions among pursuers,
i.e. these trajectories are collision-free trajectories. Then
each of these trajectories is transmitted to the correspond-
ing pursuer. Each pursuer is provided with its own path
follower controller that tries to track the desired trajectory.
This controller receives information from onboard sensors
and if on obstacle or another pursuer enter its sensing
region, it modifies its own trajectory trying to follow the
desired trajectory as close as possible, while maintaining a
safe distance to avoid collisions.

Such a control architecture shares many similarities with
those currently used for air traffic management (ATM)
systems [15], where multiple airplanes needs to be routed
to the destination airports in minimum time while avoiding
collisions. These systems present an hierarchical approach
similar to the one proposed here. The major difference is
that in our scenario the evaders are equivalent to moving
airports whose motion is unknown. This adds substantial
uncertainty and a frequent update of pursuers routes (tra-
jectories).

In the next sections we describe in detail the implemen-
tation of each module of the proposed architecture.

IV. M ULTIPLE TARGET TRACKING (MTT)

We assume a sensor network is deployed over a bounded
regionR ∈ Rn and provide observations about the moving
evaders. We consider the most general setup in which the
number of evaders and the states of evaders are unknown.
In order to compute the control laws of the pursuers,
it is of paramount importance to estimate precisely the
number of evaders and their states. The estimation problem
of multiple moving targets is known as multiple target
tracking. Multiple target tracking has been extensively
studied in radar-based tracking and vision-based tracking
[1], [4]. Under the most general setup, a varying number of
indistinguishable targets is moving around in a region with
continuous motions and the positions of moving targets
are sampled at random intervals. The measurements about
the positions are noisy, with detection probability less than
one, and there is a noise background of spurious position
reports, i.e., false alarms. Targets arise at random in space
and time. Each target persists independently for a random
length of time and ceases to exist. A track of a target is

defined as a path in space-time traveled by the target. In
most cases, there is no clear association between targets and
observations, requiring a solution to the data association
problem to associate observations to targets.

In sensor networks, we seek for an autonomous tracking
algorithm which does not require a continuous monitoring
by a human operator. We also need to consider the fol-
lowing constraints on sensor networks. Due to the limited
supply of power, the multi-hop wireless ad-hoc commu-
nication is used in sensor networks. In many cases, the
communication bandwidth is low and the communication
links are not reliable, causing transmission failures. In
addition, due to the low communication bandwidth and
a limited amount of memory, communication delays can
occur frequently. It is well known that communication
is costlier than computation in sensor networks in terms
of power usage [6]. Hence it is essential to fuse local
observations before the transmission. Since the data as-
sociation problem is NP-hard [3], [18], we cannot expect
to solve it with only local information. But, at the same
time, we cannot afford to have a centralized algorithm
since such solution cannot be scalable. In summary, we
need a simple and efficient tracking algorithm that is robust
against the low detection probability and high false alarm
rates; capable of initiating and terminating tracks; uses
less memory; combines local information to reduce the
communication load; and is scalable. Also it must be robust
against transmission failures and communication delays.
But at the same time we want an algorithm that can provide
a good solution and improve its solution toward the optimal
solution given an enough computation time.

The algorithm developed in our companion paper [17]
is a general multiple-target tracking algorithm for sen-
sor networks which can systematically track an unknown
number of targets in the presence of false alarms and
missing observations and robust against sensor localization
error, transmission failures and communication delays. The
algorithm is based on the efficient Markov chain Monte
Carlo (MCMC) data association algorithm which is capable
of tracking a varying number of targets [16]. It has been
demonstrated that the algorithm achieves remarkable per-
formance compared to MHT under the extreme conditions,
such as a large number of targets in a dense environment,
low detection probabilities, and high false alarm rates [16].
In [17], the MCMC data association algorithm is extended
in a hierarchical manner so that the algorithm becomes
scalable and its robustness against sensor localization error,
transmission failures and communications delays is demon-
strated.

V. PURSUER-TO-EVADER ASSIGNMENT

In a scenario where multiple pursuers and evaders are
present, several assignments are possible and some criteria
need to be chosen to optimize performance. In this work
we focus on minimizing the time-to-capture of all evaders.
However, other criteria might be possible, such as mini-
mization of pursuers energy while guaranteeing capture of
all evaders or maximization of number of captured evaders
within a certain amount of time. Since evaders motion
is not known, exact time to capture is not known either,
therefore we need to define a metric to estimate the time-
to-capture. We will use the following definition of time-to-
capture:

Definition 1. Let (pe(t0), ve(t0)) ∈ R2 × R2 the po-
sition and velocity of a evader at timet = t0, and
(pp(t1), vp(t1)) ∈ R2 × R2 the position and velocity of
a pursuer at timet = t1 ≥ t0. We definetime-to-capture
the minimum timeTc necessary for the pursuer to reach
the evader with the same velocity, assuming that the evader
will keep moving with constant velocity, i.e.,

Tc
∆
= min

T
{T | pp(t1+T) = pe(t1+T), vp(t1+T) = ve(t1+T)}

wherepe(t1+T) = p(t0)+(t1+T−t0)v(t0), ve(t1+T) =
v(t0), and the pursuer moves according to its dynamics.

This definition allow us to quantify time-to-capture in
an unambiguous way and, although evader can change
trajectories over time, it is a more accurate estimate than,
for example, some metric based on the distance between the
evader and the pursuer, since time-to-capture incorporates
the dynamics of pursuers. Moreover, it is well-defined for
any arbitrary time delaytd = t1 − t0 in the estimate of
evader position and velocity relative to current timet1.
Given this definition and the constraints on the dynamics
of the pursuer, it is possible to calculate explicitly the time-
to-captureTc, as well as the input to the actuators of the
pursuers as described in the next section.

A. Minimum Time-to-Capture Control

The computation of time-to-capture will be estimated
using the abstract model of pursuer dynamics given by (7)
and (8). If we define the position error between the pursuer
and the evader ase(t) ∆= pp(t)− pe(t), then the time-to-
capture problem is equivalent to the following optimization
problem:

minuo
x(t),uo

y(t) T

subject to





ëx(t) = uo
x(t), ëy(t) = uo

y(t)
|uo

x(t)| ≤ Uo
x , |uo

y(t)| ≤ Uo
y

ex(T) = ėx(T) = ey(T) = ėy(T) = 0

Since the pursuer dynamics is decoupled along the two
axes, the solution of this problem can be obtained directly
from the well known problem of minimum time control of
a double integrator. The solution is given by a bang-bang
control that can be written in feedback form as follows:

uo
x(t) =





−Uo
x If 2Uo

x ėx > −ex|ex|
+Uo

x If 2Uo
x ėx < −ex|ex|

−Uo
xsign(ex) If 2Uo

x ėx = −ex|ex|
0 If ėx = ex = 0

(12)

The minimum time can be also be written in terms of the
position and velocity error as follows:

Tc,x(ex, ėx) =





−ėx+
√

2ė2
x−4Uo

xex

Uo
x

If 2Uo
x ėx ≥ −ex|ex|

ėx+
√

2ė2
x+4Uo

xex

Uo
x

otherwise
(13)

Similar equations can be written for they-axis, therefore
the minimum time to capture is given by:

Tc = max(Tc,x, Tc,y) (14)

Despite its simplicity and apparent efficacy minimum-time
control is rarely used since it very sensitive to modeling
errors in the dynamics and in the implementation. In fact,
even the apparently innocuous digital implementation of
the feedback given in (12) can exhibit poor performance
and input chattering even in absence of any kind of noise.

Therefore, although in principle minimum time control is
attractive since it gives the best performance, it needs to
be modified to be able to cope with practical issues such
as digital implementation of control feedback, quantization
of inputs, measurement and process noise. Let us first
consider a more realistic model of error dynamics. Since
the dynamics along thex- and y-axes are decoupled, we
simply consider the dynamics along one of the axis:

ek+1 = ek + vkTd + 0.5uo
kT 2

d + 0.5wkT 2
d (15)

vk+1 = vk + uo
kTd + wkTd (16)

where ek = ex(kTd), vk = ėx(kTd), uo
k = uo

x(kTd), Td

is the discretization time interval, andwk is an unknown
external disturbance that models the fact that the evader has
an unknown trajectory. Also we assume there is measure-
ment noise so that the estimated error position and velocity
are given by:

êk = ek + zk (17)
v̂k = vk + nk (18)

wherezk andnk are the measurement noise for the error
position and velocity respectively.

As explained above, the implementation of feedback
given by (12) can give poor performance, even in ideal sce-
nario where no external disturbance and no measurement
noise is present. It is true that the smaller the discretization
time Td is, the smaller the error between the theoretical
and the true performance is. However, this is still unsatis-
factory and, even for very smallTd ¿ Tc relative to the
capture time, the performance degradation is considerable.
Recently, [8] and [22] solved the problem of minimum
time optimal control for the discretized double and triple
intergrator, respectively. In this case the difference relative
to the ideal case is negligible and it is possible to show that
Tc,digital ≤ Tc + 2Td. However, these control still perform
poorly if implemented in a scenario where even small
external disturbances and measurement noise are present
(see Figure 4). Here we propose a robust minimum time
feedback control that takes into account uncertainty about
exact motion and position of evader.

First, we consider bounded external disturbance
|wk| ≤ W , and measurement noise,|zk| ≤ Z, |nk| ≤ N ,
whereW,Z, N are positive scalars. The feedback control
input will be chosen based on the following min-max
optimization problem

u∗k = min
|uo

k|≤U

(
max

|wk|≤W,|zk|≤Z,|nk|≤N
Tc,x(ek+1, vk+1)

)

(19)
This is, in general, a nonlinear optimization problem.
However, thanks to the specific structure of the time-
to-capture functionTc,x, it is possible to show that the
previous problem is equivalent to:

u∗k = min
|uo

k
|≤U

max
(
Tc,x(e+

k+1, v
+
k+1), Tc,x(e−k+1, v

−
k+1)

)

e±k+1
∆
= êk + v̂kTd + 0.5uo

kT 2
d ± (0.5WT 2

d + NTd + Z)

v±k+1
∆
= v̂k + uo

kTd ± (WTd + N)

In the interest of space, derivations are not included in this
work and will be presented in a forthcoming technical pa-
per. The solution of the previous equation can be obtained
analytically by solving a quartic polynomial equation,
however, in realistic scenarios, the inputuo

k is quantized

and takes values from finite setUq = {U1, . . . , Up}. In
this case, the solution of the previous problem could be
obtained by simply evaluating the time-to-capture for those
p input values and then choosing the minimizer. This is
computationally efficient since the computation of time-to-
capture can be done in parallel for each value of the input
and it involves only the evaluation of sums, multiplications
and square roots.

Figure 4 shows the performance of the robust minimum
time-to-capture control feedback for tracking of an evader
which does not move on a straight line with constant
velocity and position and velocity estimates of evader is
affected by noise. It is compared with the discrete-time
minimum time controller proposed in [22] and [8]. Our
controller feedback design outperforms the discrete-time
minimum time controller since the latter one does not take
into account process and measurement noise. Note how
both controllers do not direct pursuers toward the actual
position of evader, but try to estimate future location and
therefore minimize the time-to-capture.

−10 −8 −6 −4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

X

Y

True evader
Noisy evader
min−time pursuer
robust min−time pursuer

Initial
position

Fig. 4. Trajectories of pursuers and evaders on x-y plane. Feedback
control is based on noisy estimate (thin solid line) of true evader position
(thick solid line). The robust minimum time-to-capture feedback proposed
in this paper (dot-solid line) is compared with the discrete-time minimum
time-to-capture feedback (dashed line) proposed in [22] .

B. Assignment Algorithms

In the previous section, we presented a definition to
compute the expected time-to-capture for a pursuer-evader
pair and, as a byproduct, we also computed the robust
minimum-time control feedback. Therefore, given positions
and velocities of all pursuers and evaders, it is possible to
compute the time-to-capture matrixC = [ci,j] ∈ RNp×Ne ,
where Np and Ne are the total number of pursuers and
evaders, respectively, and the entryci,j of the matrixC cor-
responds to the expected time-to-capture between pursueri
and evaderj. When coordinating multiple pursuers to chase
multiple evaders, it is necessary to select an assignment.
Our objective is to select an assignment that minimizes the
expected time-to-capture ofall evaders. Let us assume for
now that we have the same number of pursuers and evaders,
i.e. Np = Ne.

An assignment can be represented as a matrixX =
[xi,j] ∈ RNp×Ne , where the entryxi,j of the matrix X

is equal to1 if pursueri is assigned to evaderj, and equal
to 0 otherwise. The assignment problem can therefore be
written formally as follows:

minxi,j∈{0,1}maxi,j=1,...,N (ci,j · xi,j)
subject to

∑N
i=1 xi,j = 1,

∑N
j=1 xi,j = 1 (20)

As formulated in the previous equation, the assignment
problem appears as a combinatorial problem.

One simplegreedy assignmentalgorithm that tries to
solve the optimization problem above, is to look for the
smallest time-to-capture entry in the matrixC, assign the
corresponding pursuer-evader pair, and remove the corre-
sponding row and column from the matrixC which now
becomes of dimension(N − 1)× (N − 1), and repeat the
same process until each pursuer is assigned to an evader.
Although it is straightforward and easy to implement, this
is a suboptimal algorithm, since there are cases when
the greedy assignment gives the worst solution. Consider

the time-to-capture matrixC =
[

1 2
3 4

]
. The greedy

assignment would assign pursuer1 to evader1 and pursuer
2 to evader2, with time-to-capture of last evader equal to
Tmax = 4. However, the assignment that minimizes the
time-to-capture of last evader is(1, 2) and (2, 1), which
givesTmax = 3.

The optimization problem given in (20) can be reformu-
lated as alinear bottleneck assignmentproblem and can be
solved with polynomial-time algorithm based on network
flow theory. The actual implementation of these algorithms
goes beyond the scope of this paper and we address the
interested reader to the survey [2] and references therein.

Figure 5 compares the greedy assignment with the
optimal linear bottleneck assignment for a scenario with
three pursuers and three evaders. The greedy assignment
assign the closest pursuer-evader pair and in fact the first
evader is ”captured” already at timet = 50 (top-right plot),
while according to the linear bottleneck assignment the
same pursuer is assigned to the farthest evader. However,
at time t = 75 all three evaders are captured by the
pursuers employing the optimal assignment, while only two
evaders are captured by the pursuers employing the greedy
assignment (bottom-left plot).

When the number of pursuers and evaders is different,
different options are available. For example, if pursuers are
less numerous than the evaders, one could try to capture the
Np closest evaders and neglect the otherNe−Np evaders.
If pursuers are more numerous than the evaders, then extra
pursuers can be assigned to some evaders or the unassigned
Np−Ne pursuers could stay in stand-by in case additional
evaders appear in a later time. The optimal choice in these
cases depends on the specific application and it will be
investigated in a future work.

VI. COLLISION-FREECOORDINATED PATH PLANNING

Once an assignment is chosen by the pursuer-to-evader
assignment module, the trajectories generated by the ro-
bust minimum time controller described in the previ-
ous section are not guaranteed to be collision free, i.e.
||xi(t)− xj(t)|| ≥ ε for all time t, wherei, j are two differ-
ent pursuers andε is related to the minimum safe distance.
Although the distributed path follower controller module
described in the next section can overcome this problem
by replanning on-line the trajectory to avoid collision,
it possible to use global information about the location

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

4

5

t=0

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

4

5

t=25

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

4

5

t=50

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

4

5

t=75

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

4

5

t=100

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

4

5

t=125

Fig. 5. Movie of evaders tracking on the x-y plane. Evaders (circles)
move along straight lines with constant velocity. Pursuers using greedy as-
signment algorithm (diamonds) and optimal linear bottleneck assignment
(squares) are superimposed.

of pursuers and evaders available at the base stations or
supernodes to generate pursueroff-line trajectories that
are collision-free. Finding the minimum time-to-capture,
collision-free trajectories given a specified assignment is a
hard problem, since it requires the solution ofNp coupled
optimization problems. One possible approach would be
to use dynamic programming tosimultaneouslydesign
these trajectories [15]. Unfortunately, the complexity of this
approach grows exponentially with the number of pursuers,
i.e. O(ANp), where A is an appropriate constant, thus
making it impractical for a large swarm of pursuers.

One alternative approach is to solve this optimization
problemsequentially. Given an assignment, it is possible
to compute the expected time-to-capture and the expected
trajectory for each pursuer-evader pair. These trajectories
are not necessarily collision free. However, it is possible
to order this assignment based on the expected time-to-
capture. The sequential algorithm works as follows. First,
the pursuer with the largest expected time-to-capture will
follow the trajectory generated by the minimum time-to-
capture controller. Second, this trajectory is frozen and the
pursuer with the second largest expected time-to-capture
is required to capture its assigned evader while avoiding
the first pursuer. This problem can be solved via dynamic
programming [15] or via model predictive control [19] and
it has complexityO(A), since only one pursuer is involved
in this optimization problem. Then also this trajectory
is frozen, and the pursuer with the third largest time-
to-capture is required to chase its assigned evader while
avoiding the previous two pursuers. Once again, this is an
optimization problem with complexityO(A), since only
one pursuer is involved in this optimization problem. The
process is then continued similarly by incrementally freez-
ing pursuers trajectories till all pursuers’ trajectories are
generated. Although the sequential optimization algorithm
is only suboptimal, it is likely to give a good performance
since the pursuers that need to change the most their
trajectory to avoid the other pursuers, are those which had
the smallest expected time-to-capture. Therefore, the time-

to-capture of last evader, after the collision-free replanning
algorithm, should not be much greater than the ideal time-
to-capture when collision free trajectories are not enforced.
Moreover, the complexity of this algorithm is linear in
the number of pursuer, i.e.O(NpA), since it requires the
solution of N − 1 optimization problem where only one
pursuer’s trajectory is designed at one time.

We are currently implementing the simultaneous and
sequential algorithms and results will be presented in a
future paper.

VII. D ISTRIBUTED PATH FOLLOWER CONTROLLER

The minimum time-to-capture control generates desir-
able trajectory pathyi(t) for each pursueri. In pursuit
of the assigned evader, the pursuer may encounter other
pursuers or obstacles. We need to make sure that the
pursuer can reactively avoid collisions while following the
desirable trajectory path. We use the decentralized model
predictive control technique developed in [19] to generate
collision-avoiding path follower control laws. Letxi(t)
be the state of thei-th pursuer andui(t) be the control
for pursueri. Then the decentralized discrete-time optimal
control problem is to find the optimal control{u∗i (t)}T

k=1,
whereT is the time horizon, such that

{u∗i (t)}T
t=1 = arg min

T∑
t=1

qi(xi(t), ui(t))+qif (xi(T +1))

(21)
subject to the dynamics of pursueri. qi(·) is the cost-to-go
and qif (·) is the terminal cost. For each time stepk, we
solve for{u∗i (t)}T

t=k from the statexi(k) and applyu∗i (k).
For the next stepk+1, we repeat these steps from the state
xi(k + 1). The terminal cost is defined as

qif (xi(T +1)) =
1
2

(yi(t)− Cxi(t))
T

P0 (yi(t)− Cxi(t))

for a symmetric positive-definite matrixP0. The cost-to-go
is decomposed into two parts

qi(xi(t), ui(t)) = qt
i(xi(t), ui(t)) + qc

i (xi(t), ui(t)),

whereqt
i(xi(t), ui(t)) is the cost of being away from the

desired path andqc
i (xi(t), ui(t)) is the cost of being close

to obstacles.qt
i is defined in the usual form

qt
i(xi(t), ui(t)) = 1

2

[
(yi(t)− Cxi(t))T Q(yi(t)− Cxi(t))

+ui(t)T Rui(t)
]
,

whereQ and R are symmetric positive-definite matrices.
Suppose that there areN obstacles, including other pur-
suers. We use the potential field method to computeqc

i as

qc
i (xi(t), ui(t)) =

N∑

j=1

KjI(j 6= i)

(xi(t)− xj(t))
T

Qc (xi(t)− xj(t))
,

whereQc is a symmetric positive-definite matrix andKj

a constant determining the shape of the potential function.
The optimization problem of Equation (21) is nonlinear,

therefore its solution is not guaranteed by any algorithm.
However, iterative gradient descent algorithms initialized
with the initial desired trajectoryyi(t) has been found to
quickly converge to a solution with very good performance.
More details can be found in [19].

VIII. S IMULATIONS

For simulations below, we consider the surveillance over
a rectangular region on a plane,R = [0, 100]2. The state
vector isx = [x, y, ẋ, ẏ]T where(x, y) is a position inR
along the usualx andy axes and(ẋ, ẏ) is a velocity vector.
The following linear dynamic and measurement models are
used

xt+1 = A(δ)xt + G(δ)wt

yt = Cxt + vt,
(22)

where δ is a sampling interval,wt and vt are white
Gaussian noises with zero mean and covarianceQ =
diag(.152, .152) andR = diag(R2

s
16 ,

R2
s

16), respectively, and

A(δ) =




1 0 δ 0
0 1 0 δ
0 0 1 0
0 0 0 1


 G(δ) =




δ2

2
0

0 δ2

2
δ 0
0 δ


 C =




1 0
0 1
0 0
0 0




T

The transmission and sensing ranges areRt = 20 andRs =
5, respectively, which correspond to a SN of 400 nodes. For
the sensor model, we useα = 2, γ = 1 and β = 2(1 +
γRα

s). We usedpt
e = .05 and pd

e = .05. The false alarms
are uniformly distributed overR and its rate is one false
alarm per time. For each sensor, the detection probability
is .95.

Figure 6 shows snapshots of the PEGs scenario with
5 evaders and 5 pursuers. Note how the assignment is
dynamic and it is pursuers are reassigned as new evaders
appear or disappear in order to minimize the time-to-
capture of all evaders.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

pursuers

undetected
evaders

t=0
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

detected
evaders

t=25
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

t=50

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

t=75
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

t=100
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

t=125

Fig. 6. Snapshots of PEGs using SN x-y plane. Evaders (large hollow
icons) move within a sensor network (small circles). Pursuers (small
filled icons) using linear bottleneck assignment algorithm and optimal
linear bottleneck assignment (squares) chase evaders. The pursuer-evader
assignment is indicated using the same icon.

IX. CONCLUSION AND FUTURE WORK

In this paper we presented a framework to analyze and
design algorithms for Pursuit Evasion Games with Sensor
Networks. We presented a mathematical formulation of
sensor network and vehicle dynamics and a hierarchical
control architecture that exploits the benefits of using a
sensor network. We also proposed a series of algorithms
to combine both coordinated maneuvering and distributed
control of pursuers at different stages in order to minimize
time-to-capture of all evaders while guaranteeing safety and
collision free maneuvers of pursuers.

Future work would include a more extensive comparison
between probabilistic PEGs with PEGs using SNs in order

to evaluate the trade-offs between the two approaches.
Also, the algorithms presented here can be extended more
rigorously when there are more pursuers than evaders and
coordinated maneuvering of pursuers allow the capture of
”fast and smart” evaders similarly as observed in mobs of
lions hunting an agile pray.

REFERENCES

[1] Y. Bar-Shalom and T.E. Fortmann.Tracking and Data Association.
Mathematics in Science and Engineering Series 179 Academic
Press, San Diego, CA, 1988.

[2] R.E. Burkard and R. Çela. Linear assignment problem and ex-
tensions. Technical Report 127, Karl-Franzens University of Graz,
Graz, Austria, 1998.

[3] J.B. Collins and J.K. Uhlmann. Efficient gating in data association
with multivariate distributed states. InIEEE Trans. Aerospace and
Electronic Systems, volume 28(3), 1992.

[4] I.J. Cox. A review of statistical data association techniques for
motion correspondence. InInternational Journal of Computer
Vision, volume 10(1), pages 53–66, 1993.

[5] X. Deng, T. Kameda, and C. Papadimitriou. How to learn an
unknown environment I: The rectilinear case.Journal of the ACM,
45(2):215–245, 1998.

[6] L. Doherty, B. A. Warneke, B. Boser, and K. S. J. Pister. Energy and
performance considerations for smart dust. InInternational Journal
of Parallel and Distributed Sensor Networks, Dec 2001.

[7] D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instrumenting the
world with wireless sensor networks. InInternational Conference
on Acoustics, Speech, and Signal Processing (ICASSP 2001), Salt
Lake City, UT, May 2001.

[8] Z. Gao. On discrete time optimal control: A closed-form solution. In
Proceeding of the 2004 American Control Conference (ACC), pages
52–58, Boston, Massachusetts, U.S.A., June 2004.

[9] J.P. Hespanha, H.J. Kim, and S.S. Sastry. Multiple-agent proba-
bilistic pursuit-evasion games. InIEEE Int. Conf. on Decision and
Control, pages 2432–2437, 1999.

[10] N.L. Johnson. Monitoring and controlling debris in space.Scientific
American, pages 62–68, August 1998.

[11] H.J. Kim, R. Vidal, D.H. Shim, O. Shakernia, and S.S. Sastry. A
hierarchical approach to probabilistic pursuit evasion games with
unmanned ground and aerial vehicles. InIEEE Int. Conf. on
Decision and Control, pages 634–639, 1901.

[12] J.J. Liu, J. Liu, M. Chu, J.E. Reich, and F. Zhao. Distributed state
representation for tracking problems in sensor networks. InProc.
of 3nd workshop on Information Processing in Sensor Networks
(IPSN), April 2004.

[13] Juan Liu, Jie Liu, James Reich, Patrick Cheung, and Feng Zhao.
Distributed group management for track initiation and maintenance
in target localization applications. InProc. of 2nd International
Workshop on Information Processing in Sensor Networks (IPSN’03),
April 2003.

[14] Seapahn Meguerdichian, Farinaz Koushanfar, Gang Qu, and Mio-
drag Potkonjak. Exposure in wireless ad hoc sensor networks. In
Procs. of 7th Annual International Conference on Mobile Computing
and Networking, pages 139–150, July 2001.

[15] A. Nilim and L. El Ghaoui. Algorithms for air traffic flow
management under stochastic environments. InProc. of American
Control Conference, 2004.

[16] Songhwai Oh, Stuart Russell, and Shankar Sastry. Markov chain
monte carlo data association for general multiple target tracking
problems. In43rd IEEE Conference on Decision and Control (to
appear), Paradise Island, Bahamas, December 2004.

[17] Songhwai Oh, Luca Schenato, and Shankar Sastry. A hierar-
chical multiple-target tracking algorithm for sensor networks. In
International Conference on Robotics and Automation (submitted),
Barcelona, Spain, 2005.

[18] A.B. Poore. Multidimensional assignment and multitarget tracking.
In Partitioning Data Sets. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, volume 19, pages 169–196,
1995.

[19] D.H. Shim, H.J. Kim, and S.S. Sastry. Decentralized reflective model
predictive control of multiple flying robots in dynamic environment.
In Proc. of IEEE Conf. on Decision and Control, Las Vegas, 2003.

[20] B. Sinopoli, C. Sharp, S. Schaffert, L. Schenato, and S. Sastry.
Distributed control applications within sensor networks.IEEE Pro-
ceedings Special Issue on Distributed Sensor Networks, November
2003.

[21] S Thrun, W. Burgard, and D. Fox. A probabilistic approach to
concurrent mapping and localization for mobile robots.Machine
Learning and Autonomous Robots (joint issue), 31(5):1–25, 1998.

[22] R. Zanasi and R. Morselli. Discrete minimum time tracking problem
for a chain of three integrators with bounded input.Automatica,
39:1643–1649, 2003.

