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Abstract— There is a growing interest in smart homes and
predicting behaviors of inhabitants is a key element for the
success of smart home services. In this paper, we propose
two algorithms, DBN-ANN and DBN-R, based on the deep
learning framework for predicting various activities in a home.
We also address drawbacks of contrastive divergence, a widely
used learning method for restricted Boltzmann machines,
and propose an efficient online learning algorithm based on
bootstrapping. From experiments using home activity datasets,
we show that our proposed prediction algorithms outperform
existing methods, such as a nonlinear SVM and k-means,
in terms of prediction accuracy of newly activated sensors.
In particular, DBN-R shows an accuracy of 43.9% (51.8%)
for predicting newly activated sensors based on MIT home
dataset 1 (dataset 2), while previous work based on the n-gram
algorithm has shown an accuracy of 39% (43%) on the same
dataset.

I. INTRODUCTION

The aged dependency ratio, a ratio of the number of
persons aged over 65 to the number of persons aged between
15 to 64, is projected to rise significantly due to low fertility
rates [1]. Especially, in Japan, the current aged dependency
ratio is about 0.25 and it is expected to increase to 0.71 by
the year 2050. Because of this demographic shift, the need
for smart homes which can assist occupants for maintaining
independent lifestyles and increase the quality of life is
emphasized [2], [3]. In this context, a number of research
groups, and corporations have conducted studies of pervasive
computing technologies for smart homes [4], [5], [6], [7], [8].

A number of existing studies have focused on passive
sensing of recognizing inhabitants’ activities or detecting
abnormal behaviors based on sensory data [2], [7], [9].
However, in order to provide intelligent services, the system
needs to understand human behavior and intention. An ability
to provide a service to the users when it is needed without
the user intervention is crucial for the success of smart
homes [6]. In other words, the smart home system needs
an ability to learn human intention and make predictions
about human behaviors. For this objective, several studies
on human behavior prediction have been conducted [5], [6],
[10].

Aipperspach et al. [5] applied the n-gram algorithm, which
is developed for natural language processing, to model and
predict human behavior for smart homes. Kubota et al. [10]
proposed a human behavior prediction algorithm for a partner
robot. Spiking neurons are used for extracting temporal
patterns of human behavior and the prediction of the next
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behavior is performed based on the inferred pattern. In [6],
Mozer et al. applied Q-learning, a reinforcement learning
algorithm, to predict when lights in a home will be turned
on or off in order to schedule activations of lights in a home
to conserve energy.

We believe that two terms “intention” and “prediction” are
deeply intertwined, and in order to predict human behavior
successfully, it is required to understand inherent intention.
However, the majority of the aforementioned work have been
focused on making predictions based on outward behaviors,
not inferring intention behind the behavior [5], [6], [10].
Although humans have an inherent ability to understand
other people’s intention from their actions [11], it is difficult
to extract relationship between actions and intentions in a
structured way.

The present paper attempts to extract the relationship be-
tween past actions and the future action using deep learning.
Recently, deep learning, such as a deep neural network, has
gained its popularity as a powerful tool for learning complex
and large-scale problems [12]. The model for deep learning
is typically constructed by cascading multiple restricted
Boltzmann machines (RBMs) [13]. This deep architecture
has been successfully used as a feature extractor for text,
image, and sound data and as a good initial training step for
deep architectures [14], [15]. The parameters of an RBM
model can be learned using contrastive divergence (CD)
[16] by approximating the model distribution using Gibbs
sampling. However, this approximation scheme sometimes
provides unsatisfactory results and a better learning method
is needed for more complex problems [17], [18].

In this paper, we propose novel human behavior prediction
algorithms using the deep learning architecture as an alterna-
tive to existing shallow architectures, such as a support vector
machine (SVM) [19]. After discussing difficulties of using
CD for training the human behavior model discussed in this
paper, we propose an improved sampling method which can
approximate the model (target) distribution more accurately
using bootstrapping and selective learning. We first compare
the proposed learning method against other conventional
methods on a classification problem [20]. The performance
of the proposed prediction method is demonstrated using the
MIT home activity dataset [2] (see Figure 1). The proposed
prediction method achieves an accuracy of 43.9% (51.8%)
for predicting newly activated sensors based on MIT home
dataset 1 (dataset 2), while previous work based on the n-
gram algorithm has shown an accuracy of 39% (43%) on
the same dataset. The proposed human behavior prediction
framework for smart homes is quite general and it can be
easily extended to predict diverse human behaviors.



Fig. 1. Representative photos of the installation of “tape-and-forget” data
collection sensors used in the MIT home dataset [2].

The remainder of this paper is organized as follows. In
Section II, we briefly explain deep learning. The proposed
training and prediction methods using deep learning are
presented in Section III. In Section IV, experimental results
of the UCI dataset [20] and MIT home dataset [2] are
presented.

II. DEEP LEARNING

In this section, we briefly review deep learning or deep
belief network (DBN) [4]. The cascaded structure used in
deep learning is sometimes called a deep architecture. DBN
consists of multiple restricted Boltzmann machines (RBM),
which are energy-based unsupervised learning models. The
most widely used learning method for an RBM is contrastive
divergence (CD) [16].

A. Restricted Boltzmann Machine

A restricted Boltzmann machine (RBM) [13] is a particular
type of a Markov random field which has two layers. One
layer of an RBM consists of visible input units, v ∈ {0, 1}D,
which are connected to the other layer of hidden stochastic
units h ∈ {0, 1}F . Figure 2 shows the basic structure of an
RBM. The distribution of state {v,h} of an RBM is specified
by the following energy function:

E(v,h|θ) = −
D∑
i=1

F∑
j=1

wijvihj −
D∑
i=1

bivi −
F∑

j=1

ajhj , (1)

where W represents visible-to-hidden weight matrix consist-
ing of weights wij of connections between neurons vi and
hj , b represents a visible bias vector, and a represents a
hidden bias vector. A set of all parameters is denoted by
θ = {W,b,a}. The conditional distribution of the hidden
vector h given the visible vector v can be derived from (1)
using p(x|θ) = exp[−E(x|θ)]/Z(θ) as follows:

p(hj = 1|v) = g

(∑
i

Wijvi + aj

)
, (2)

Fig. 2. Restricted Boltzmann machine (RBM)

Fig. 3. Reconstruction results using an RBM. The first and second row
indicate the reference MNIST digit data [21] and 20 % salt and pepper
noised data, respectively. The third row is the reconstruction of the second
row as an input using a pre-trained RBM.

p(vi = 1|h) = g

∑
j

Wijhj + bi

 , (3)

where g(x) = 1/(1 + exp(−x)) is a logistic function and
Z(θ) =

∑
x exp[−E(x|θ)] is a normalizing constant.

Some attractive characteristics of an RBM include an
ability to denoise corrupted data by capturing intrinsic shapes
of training samples. Figure 3 shows the denoising result using
an RBM on the MNIST digit dataset [21]. The first and
second rows indicate reference data and 20% salt and pepper
noised data, respectively, and the last row is the denoised data
using a pre-trained RBM.

B. Contrastive Divergence Learning

The maximum likelihood estimate of parameter θ =
{W,b,a} of an RBM can be obtained iteratively using a
gradient-based update rule with learning rate η as follows:

wij ← wij + η[〈vihj〉data − 〈vihj〉model], (4)

bi ← bi + η[〈vi〉data − 〈vi〉model], (5)

aj ← aj + η[〈hj〉data − 〈hj〉model], (6)

where 〈·〉data denotes the expectation over the data distribu-
tion or positive phase distribution, P (h|{v(t)},θ). Similarly,
〈·〉model denotes the expectation over the model or negative
phase distribution, P (v,h|θ).

The computation of the true gradient over P (v,h|θ) has
the computational complexity of O(2D+Q), where D and
Q are numbers of nodes in a visible and hidden layer,
respectively. To overcome this computational hurdle, [16]
proposed the contrastive divergence (CD) learning method
which approximates the model distribution using Gibbs sam-
pling with the probability distribution of input samples as



follows:

〈vihj〉data − 〈vihj〉model ≈ 〈vihj〉data − 〈vihj〉Gc , (7)

〈vihj〉data =
1

n

n∑
t=1

v
(t)
i P (h

(t)
j |v

(t),θ), (8)

〈vihj〉Gc
≈ 1

n

n∑
t=1

v
(t)
i P (h

(t)
j |v

(t),θ), (9)

where Gc denotes the approximated distribution of the c-th
iteration of Gibbs sampling and n is the number of samples,
and vi is a negative phase visible unit from Gibbs sampling.
The direction of the approximated gradient, however, is
not identical to the true gradient and CD learning is also
known to be biased [22]. Thus, in order to overcome these
disadvantages, we propose a new learning method to better
represent the model distribution in Section III-A.

III. PREDICTION USING DEEP LEARNING

This section describes learning and prediction methods
using the deep learning architecture.

A. Efficient Online Learning Using Bootstrapping

As mentioned in the Section II-B, the conventional CD
learning has several disadvantages such as an inaccurate
approximation of the model distribution and biased estimates.
Here, we propose a new learning algorithm to supplement the
drawback and improve the existing CD learning method.

In the proposed method, we use the idea of bootstrapping
to calculate the target distribution more efficiently in the
Gibbs sampling step. Because the problem of learning is
only focused on the approximation of the negative phase or
the model distribution, we only consider the computation of
the negative phase distribution 〈vihj〉model. Thus, in order
to approximate the model distribution more efficiently, we
use the previous negative samples as well as the current
negative sample by accumulating these samples. Since the
computational burden is increased when the number of
iterations is increased, we only use the m previous adjacent
samples in the proposed method. If the number of iterations
t is lower than m (t ≤ m) in the early stage of the learning,
we only use t samples.

Furthermore, in order to remove noisy samples from the
accumulated samples, we select l samples having lower
errors in the m collected samples based on the reconstruction
error between the current positive phase sample and each
collected sample in the negative phase. The overall procedure
of the proposed learning method is described in Algorithm 1.
Line 6-7 represents the positive phase and line 8-14 repre-
sents the negative phase. Gradient and weight update phase
is shown in line 15-16. The difference between the proposed
method and CD is that we consider the previous collected
samples which have less noise than other previous samples
to better represent the target distribution.

Algorithm 1 Efficient online learning of an RBM using
bootstrapping

1: Input : vj ∈ RD, j = 1, ..., n, r is the number of
maximum iterations, and θ = {W , b,a}

2: Initialize W to small random values and b,a to all zeros
3: v+j ← vj for all j
4: for i = 1 : r
5: for j = 1 : n
6: Calculate h+

j = P (h|v+j ,θ)
7: Calculate positive phase gradient g+jj = v

+T

j h+
j

8: Sample v−j from P (vj |h+
j ,θ)

9: for k = max(j −m, 1) : j
10: Calculate the reconstruction error of v+j − v

−
k

11: end
12: Select l samples having lowest errors
13: Calculate negative phase gradient
14: g−jj =

1
min(j,l)

∑j
r=max(j−l,1)(v

−T

r h−r )

15: Calculate the full gradient gjj = g+jj − g
−
jj .

16: Update W , b,a using (4), (5), and (6).
17: end
18: end

B. Deep Architectures for Prediction

In this section, we first present a widely used prediction
method, DBN-SVM [23], and then propose two prediction
methods, DBN-ANN and DBN-R, using the deep architec-
ture.

DBN-SVM is a hybrid model which combines a DBN and
a nonlinear support vector machine (SVM). The input data is
connected to the visible layer of a DBN, and the uppermost
hidden layer is connected to the input of a SVM as shown
in Figure 4(a). A radial basis function is used as a kernel for
the SVM. In the training phase, the DBN is trained first in an
unsupervised manner using Algorithm 1. Then the uppermost
hidden layer acquired from input data and output data is used
to train the SVM.

DBN-ANN is a similar hybrid model, but, in this case, an
artificial neural network (ANN) is used instead of a SVM
as shown in Figure 4(b). The backpropagation algorithm
minimizing the mean square error (MSE) using the scaled
conjugate gradient (SCG) method [24] is used to train the
ANN. The number of hidden layers can be freely selected
and a three-layer ANN is used in this paper1.

DBN-R is a new formulation of the deep learning archi-
tecture for prediction. The DBN-R model is inspired by the
ability of reconstructing missing data in an RBM as shown in
Figure 3. Figure 4(c) shows the structure of DBN-R. In the
training phase, we concatenate both input xi ∈ Rd and output
yi ∈ Rq to construct the data D = {(xi,yi), i = 1, · · · , n}.
The concatenated data D is used to train the DBN using
Algorithm 1. In test phase, when a new input x? ∈ Rq is
given, we fill x? into the input part vI ∈ Rd of visible layer

1Note that, while an ANN can have multi-dimensional output, a SVM
can only have one dimensional output. For this reason, when we want to
predict a n-dimensional output, we have to use n different SVMs.



(a) DBN-SVM (b) DBN-ANN (c) DBN-Reconstruct

Fig. 4. The three deep architectures, DBN-SVM [23], DBN-ANN, and DBN-R, for human behavior prediction from left to right.

v ∈ Rd+q and some constant α into the output part vO ∈ Rq ,
where α was set to the ratio of the number of activations to
the number of total incidences (activation + deactivation).
With this concatenated v = [vI

T vO
T ]T ∈ Rd+q , we can

reconstruct the visible layer by propagating up and down the
hierarchy of the trained DBN using (2) and (3) as shown in
Figure 5. Finally, we use the output part v′O ∈ Rq of the
reconstructed visible layer v′ ∈ Rd+q as a predicted output
y? ∈ Rq . The overall procedure is summarized in Algorithm
22. Furthermore, DBN-R can be interpreted as a prediction
based on intention learning. The uppermost representation
h2 of a given input x? can be interpreted as a predicted
intention. The reconstruction of the visible layer v′ can be
interpreted as making a prediction based on the predicted
intention h2.

Algorithm 2 Deep belief network using DBN-R
Given N pairs of input xi ∈ Rd and output yi ∈ Rq , and
the structure of DBN.
Train phase

1. Concatenate N pair of input and output, i.e.,
D = {(xT

i , yT
i )

T |i = 1, · · · , N} ∈ Rd+q .
2. Train the given DBN with D using Algorithm 1.

Test phase
1. New input x? ∈ Rd is given.
2. Fill the input part vI ∈ Rd by x? and output part
vO ∈ Rq of v by α, and concatenate then into v,
i.e., v = [vI

T vO
T ]T = [xT

? α× 1T ]T , where
1 ∈ Rq is a vector of which elements are all 1.

3. Reconstruct the visible layer v′ by propagating v
up and down the hierarchy using (2) and (3).

4. Use output part v′O ∈ Rq of reconstructed visible
v′ ∈ Rd+q as predicted output y? ∈ Rq .

IV. EXPERIMENTAL RESULTS

In this section, we provide experimental results for vali-
dating the performance of the proposed learning method and

2Note that unlike DBN-ANN and DBN-SVM, DBN-R does not need an
additional layer to perform supervised learning task. Moreover, by using
not only the feed-forward process but also the feed-backward process, it
can fully utilize the trained DBN structure.

Fig. 5. DBN-R in the test phase. The output part of reconstructed visible
layer vO ∈ Rq is the predicted output.

prediction algorithms from Section III. In Section IV-A, we
evaluated the performane of our proposed learning algorithm
compared to other conventional learning algorithms for a
DBN using the UCI MLR dataset [20]. In Section IV-B,
our proposed prediction algorithms, DBN-SVM, DBN-ANN
and DBN-R, are applied to the MIT home dataset [2] (see
Figure 6).

A. Classifying labels using the UCI dataset

We have applied our proposed method in Algorithm 1
and compared to other DBN learning methods on the Pima-
Indians-Diabetes in UCI dataset [20] to verify the com-
petitiveness of the proposed learning algorithm. We have
performed a 10-fold cross validation and the result for
each algorithm is the average and its standard deviation of
10 independent runs. In the experiment, the three-nearest
neighborhood (3-NN) method is used as a classifier because
of its simplicity and weights were initialized randomly using
samples from the Gaussian distribution with zero mean and
standard deviation of 0.01. In addition, the learning rate η
was set to 0.01. Table I shows the average results of the
proposed method and the other basic neural network learning
methods. In full-batch learning, weights are updated over
the entire training data. On-line learning updates weights
using one training instance at a time and mini-batch learning
updates weights over some number u (u < n) of instances
[25]. As shown in Table I, the proposed method shows
the highest classification rate compared to other training
methods.
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Fig. 6. MIT home dataset 1 and 2 [2]. The x-axis indicates temporal
sequence with 5 minutes period, and the y-axis indicates the types of sensors
used in the dataset. White and black indicates activations and deactivations
of sensors, respectively.

TABLE I
THE AVERAGE CLASSIFICATION RESULTS USING

PIMA-INDIANS-DIABETES DATA [20]

Pima-Indians-Diabetes dataset

Method Classification rate (%)

The proposed method 74.21

Online learning 72.67

Mini-batch learning 72.89

Full-batch learning 72.86

B. Predicting human behavior using the MIT home dataset

We used the MIT home dataset [2] for validating the per-
formance of our proposed deep architectures. The MIT home
dataset consists of two independent datasets collected from
two single-person apartments for two weeks using “tape-and-
forget” data collection boards. There were 77 sensors in the
first apartment and 84 sensors in the second apartment. The
sensors were installed in everyday objects, such as drawers,
refrigerators, and light switches, as shown in Figure 1.

We have preprocessed the dataset to make it suitable for

prediction. We first represent the whole chronological data
by a unit period (T ), i.e., if a sensor is activated in a certain
unit period, the value for the sensor is 1, otherwise, it is 0.
The preprocessed dataset 1 and 2 are shown in Figure 6.
The prediction is carried out using a sliding window of size
W . In this experiment, we set W to be 9 and T to be 5
minutes. To sum up, the prediction about which sensors will
be activated in the next 5 minutes is based on sensory data
from previous 45 minutes.

We used five different algorithms, k-means, a nonlinear
SVM, DBN-ANN, DBN-SVM, and DBN-R, for making
predictions. For implementing a nonlinear SVM, LIBSVM
package [26] with a RBF kernel was used. In all proposed
algorithms, we used three-layer DBN, i.e., one visible layer
and two hidden layers. The number of nodes in the first
hidden layer is 200 and 100 nodes are used for the second
hidden layer. The artificial neural network in DBN-ANN is
based on a three-layer ANN with 100 hidden nodes.

As shown in the left column of Figure 8, the overall predic-
tion accuracy is usually very high, i.e., above 90%. However,
we cannot fully evaluate the prediction performance for two
reasons. The overall accuracy includes both activation and
deactivation of sensors. However, once a sensor is active
(inactive), it will be active (inactive) for a long period of
time (see Figure 7). Hence, an algorithm can report a high
accuracy value while it makes poor predictions about when
a sensor will be activated or deactivated. The second reason
is that many sensors are not active for the majority of time,
hence, the prediction about deactivation has a little value.
Hence, it is more crucial to predict which sensor will be
newly activated. We propose a new metric, named a rising
edge accuracy (REA), for measuring this prediction quality
and it is defined as

REA =
# of correctly predicted newly activated sensor

# of newly activated sensor
. (10)

As shown in Figure 8, the proposed three deep learning-
based methods show higher accuracy rates than the base-
line method, K-means. Even though these methods showed
slightly lower accuracy than the nonlinear SVM, they out-
performed the nonlinear SVM in the newly activated sensor
experiment as shown in the right columns of Figure 8. This
can be explained by the intrinsic limitation of an SVM. While
a nonlinear SVM is one of the most widely used classifiers, in
recent work regarding analysis of kernel machines suggests
some fundamental limitations of the kernel method in that
it can only use local information with smoothing priors
[19]. However, deep architectures can represent the global
structure of a highly nonlinear and complex function [27].

In [5], Aipperspach et al. used the n-gram algorithm for
prediction human behavior using the MIT home dataset.
Since they only stack the index of newly activated sensors
and make a prediction based on this stream, their approach
is similar to our second criteria, REA, given in (10). They
have demonstrated a REA of 39% for the MIT home dataset
1 and 43% for the MIT home dataset 2. In comparison, the
proposed method DBN-R shows better performance with an



Fig. 8. Experimental results on the MIT home dataset. First and second rows shows accuracies on MIT home dataset 1 and 2, respectively. First and
second columns indicate overall accuracy and REA, respectively.

REA of 43.9% for dataset 1 and 51.89% for dataset 2. Note
that the approach in [5] cannot incorporate simultaneous
activations of sensors as well as the temporal characteristic
such as the duration of activation or when the sensor will be
activated.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed two prediction algorithms,
DBN-ANN, and DBN-R, and presented a widely used pre-
diction algorithm, DBN-SVM, for predicting human behav-
ior. We also proposed an efficient online learning algorithm
for a RBM using bootstrapping. Based on the experimental
results on the MIT home dataset, the proposed algorithm out-
performs existing classification algorithms, such as SVMs,
for predicting when a sensor will be turned on (or when
a new activity of a smart home occupant will start). In
particular, DBN-R has achieved the best performance.

In the experimental setup, we used deep architectures
concatenated with multiple layers of restricted Boltzmann
machines (RBM) to handle binary sensory data for predicting

human behaviors. However, in order to extend the proposed
predictiion algorithm to handle more general case, it is in-
tegral to utilize real-valued sensory data. Gaussian-Bernoulli
restricted Boltzmann machine (GB-RBM) can be used for
this purpose [28]. We plan to extend GB-RBM to more
general human behavior prediction problems.
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