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Abstract: Visual information extracted from RGB images has been successfully used for mobile robot localization. The
main difficulty with localization using RGB images is that visual features from RGB images are not completely invariant
against changes in viewpoints and lighting conditions. This problem can be overcome using features from RGB-D images.
In this paper, we evaluate two depth features, depth patches and histograms of oriented normal vectors, extracted from
RGB-D images for localization of a mobile robot and demonstrate that robust localization is possible under varying

lighting conditions.
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1. INTRODUCTION

Localization for indoor environments is widely stud-
ied for personal robotic systems. Localization is a field
of study that focuses on finding the position of a robot
on a given map. Localization on a 2D map using a laser
ranger has shown good performance. For example, Karto
is a comprehensive software solution which includes 2D
occupancy grid mapping and localization algorithms'. In
spite of the good performance of 2D mapping using range
sensors, localization using inexpensive cameras has been
actively studied to reduce the cost. FAB-MAP is a suc-
cessful mapping and localization algorithm using RGB
images and has been successfully applied for topological
mapping and localization of a moving vehicle [1].

Visual localization algorithms using cameras are not
reliable under varying lighting conditions. The quality
of RGB images highly depends on lighting conditions.
Thus accurate localization cannot be achieved when it is
dark. The use of depth images can be an alternative un-
der different lighting conditions. With the introduction
of RGB-D devices, such as Kinect from Microsoft, depth
information can now be extracted at a low cost.

Henry et al. [2] extracted RGB features and used depth
values of matched features to compute an accurate ho-
mography between two successive images. The approach
is not robust against different lighting conditions because
it assumes that RGB features are extracted reliably. In
this paper, we treat depth features like visual features
used in FAB-MAP. We develop a depth feature detec-
tion algorithm and evaluate the performance of two depth
feature models, depth patches and histograms of oriented
normal vectors [3]. We demonstrate that the combination
of depth features along with RGB features improves the
localization performance under different lighting condi-
tions.
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This paper is structured as follows. Section 2 describes
observation models and Section 3 introduces a localiza-
tion algorithm using depth features. Experimental results
are discussed in Section 4.

2. DEPTH FEATURES

This paper employs two depth feature models, depth
patch (DP) and histograms of oriented normal vectors
(HONV) feature models [3]. We designed the DP feature
model which compresses raw depth data. The HONV
model was suggested for object recognition by Tang et
al. [3]. The distribution of depth features is used to rep-
resent places in the map. This paper evaluates localiza-
tion with depth features compared with localization using
only RGB information, e.g. SURF features [4].

2.1 Depth Patch (DP)

Each DP feature is a compressed version of a local
patch of size N,, x N, where N,, is set to 25 in this
paper. The depth data of a local patch is compressed into
a 13 x 13 patch by bi-cubic interpolation and rearranged
into a 169 dimensional vector to generate a DP feature.

2.2 Histogram of Oriented Normal Vectors (HONYV)

The HONV model describes surface properties of a lo-
cal patch. The normal vector at a point (z,y) on the im-
age D is calculated using the cross product of two tangent
vectors in x and y directions. The partial derivative of a
tangent vector is the difference in depth values between
adjacent pixels.
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A normal vector in the Cartesian coordinate system with
three dimensions can be represented more compactly by
the azimuthal angle ¢ and the polar angle 6 in the spheri-
cal coordinate system as follows:
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where @ < 1. Histograms of ¢ and 6 of all pixels in
a 25 x 25 local patch form a HONV feature. A HONV
feature is a 128 dimensional vector with 16 bins for ¢ and
8 bins for 6.

2.3 Interest Point Detection

An interest point detector selects informative local ar-
eas for effective feature extraction. For example, RGB
features are shown as yellow dots in Figure 1. Edges
are important in both an RGB image and a depth im-
age. Hence, the Sobel edge detector [5] can be used to
find interest points from a depth image. However, due to
the limitations of the Kinect sensor, we have introduced a
post-processing step to generate more consistent interest
points. Since objects in a distance are not useful for local-
ization, we eliminate Sobel edges belonging to distant ob-
jects. Each pixel belonging to a Sobel edge is an interest
point candidate. Since the depth image from Kinect often
contains pixels with missing depth data, we eliminate any
interest point candidate if the number pixels with missing
depth is large for the local patch around the interest point
candidate. We then cluster interest point candidates and
cluster centers become interest points. The detected inter-
est points are robust against different lighting conditions
as shown in Figure 1(b), 1(d), and 1(f).

3. LOCALIZATION

For robot localization, we utilize FAB-MAP [1],
which is a visual mapping and localization algorithm us-
ing RGB images. It generates a discrete map and finds the
robot’s current position on the map using RGB observa-
tions. The RGB observation is a binary vector which rep-
resents existence of visual words. The algorithm shows
good performance but it can become ineffective if visual
features are not reliably detected. We perform robust lo-
calization by replacing RGB data with depth data.

3.1 Observation Vector

From a training set of depth features, we perform k-
means clustering algorithm to group the training set into
k clusters. Each cluster represent a word. A feature ex-
tracted from a test image is assigned to the nearest cluster
or word. The existence of words in an image becomes a
binary vector and it serves as an observation vector for
the localization algorithm.

3.2 FAB-MAP
The FAB-MAP algorithm builds a map which is a set

of locations. Each location L; is represented by probabil-
ities of existing words as follows:

Li : {p(el = 1‘L7,>7p(62 = 1|L’L)7 v 7p(e|v| = 1|L’L)}7

where v is a vocabulary set and |v| is the number of words
in it. e; indicates the existence of the word j. An obser-
vation at time k is denoted by Zp = {z1, ..., 2y}
where z; is a binary variable and z; = 1 indicates that

(b) Depth Image
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Fig. 1 (Left) Detected SURF features. (Right) Detected
depth features. Dots are detected interest points. A
depth detector provides consistent interest points un-
der different lighting conditions.

the ith word is detected. Z* = {Z;, ..., Z;} is a set
of accumulated observations. Localization is to find the
place L; which maximizes p(L;|Z*) given by

Zi|Li, ZF)p(L| ZF71)

7k _p(
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The observation likelihood p(Zy|L;, Z*~1) is equal to
p(Zk|L;) due to conditional independence between the
current and past observations given the current location.
The likelihood is approximated by a Chow-Liu tree [6],
which describes a joint probability distribution using a
second-order product approximation. Training a Chow-
Liu tree and a vocabulary set is done during the mapping
phase. More details can be found in [1]. We have used
the open source version of the algorithm 2.

4. EXPERIMENTS

4.1 Datasets

Datasets used in experiments consist of RGB-D im-
ages and the ground truth data for localization. They
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have variations in camera viewpoints and lighting con-
ditions. Table 1 explains datasets used in experi-
ments. Freiburg2_pioneer_slam series are open RGB-
D SLAM datasets from the Computer Vision group at
Technische Universitidt Miinchen [7]. Some photos from
the dataset are shown in Figure 2(a)-2(f). Laboratoryl
and Laboratory2 are collected from our laboratory and
seminar rooms. Laboratoryl is collected by a robot mov-
ing around the laboratory arbitrarily. Laboratory2 con-
tains 452 images at 96 places with various lighting con-
ditions to evaluate robustness of depth features (Figure
2(h)-2(1)). TestSetl, and TestSet2 are datasets different
from the training sets. Datasets contain image sequences
with small overlaps since the FAB-MAP algorithm does
not perform well if there is a large overlap between suc-
cessive images. A vocabulary set is trained using Train-
ingSet] and Chow-Liu trees are generated using Train-
ingSet2. The performance of localization is evaluated us-
ing TestSetl, TestSet2, and TestSet3.

4.2 Parameters

The performance of FAB-MAP depends on its sensor
model and the number of words. The sensor is mod-
eled with the true positive rate, p(z = 1lle = 1), and
the false positive rate, p(z = 1le = 0). The true pos-
itive rate is the probability that there exists a vocabu-
lary word when the sensor detects it. The false positive
rate is the probability that there is no vocabulary word
when the sensor detects it. p(z = 1lle = 1) was se-
lected from {0.34, 0.36, 0.38, 0.4, 0.43, 0.45, 0.5}, and
p(z = 1|e = 0) was selected from {0, 0.02, 0.04, 0.06,
0.08, 0.1, 0.12}. The algorithm is more sensitive to the
false positive rate than the true positive rate. Those pa-
rameters are chosen for the best performance from the
training dataset. From our training set, we found that the
true positive rate of 0.45 and the false positive rate of
0.12 gave the best performance. The number of words K
was selected from {512, 1024, 2048, 4096} and the best
parameter for each case is denoted in Table 2.

Table 1 Datasets

Dataset Source Note
Freiburg?2
TrainingSetl | _pioneer_slam vocabulary
Laboratoryl
TrainingSet2 Ffezburg 2 Chow-Liu tree
_pioneer_slam
TestSetl] F?jezburg 2 321 images
_pioneer_slam?2
TestSet2 Ffezburg 2 381 images
_pioneer_slam3
TestSet3 | Laboratory?2 452 images

Table 2 Localization Accuracy (%). The size of vocabu-
lary is shown in parenthesis.

Dataset || RGB | HONV| DP | RGB+ | RGB+
(K) HONV| DP
TestSetl|| 70.09 | 46.11 | 71.03 | 73.83 | 84.74
(2048)| (1024) | (2048)| (2048+| (4096+
1024) | 2048)
TestSer2|| 61.42 | 40.68 | 57.48 | 64.83 | 71.39
(1024)| (2048) | (2048)| (4096+ | (4096+
512) 512)
TestSet3|| 48.45 | 72.12 | 88.05 | 73.67 | 84.29
(2048)| (1024) | (512) | (2048+| (4096+
1024) | 1024)

4.3 Results

Localization is evaluated using the localization accu-
racy, which is the ratio between the number of correctly
localized places and the number of all visited places.
The estimated location L;, which maximizes p(L;|Z*),
is correctly localized if it matches the ground truth loca-
tion.

The results are shown in Table 2. We find that lo-
calization with depth features shows an excellent perfor-
mance. A detector extracts depth features at reliable in-
terest points in spite of various lighting conditions and
viewpoints. The high localization accuracy of depth fea-
tures shows that those features represent properties of lo-
cations well in comparison with using only RGB features.

The interest point detector for depth features provides
invariant informative points against lighting conditions
while a detector for RGB features does not. Yellow points
in Figure 1(a), (c), and (e) are interest points extracted
by a SURF detector from RGB images. Three images
have different interest points though they are taken at the
same place and this is due to different lighting condi-
tions. Since different interest points generate different
visual features, they can not provide useful information
for reliable localization. On the other hand, the proposed
detector extracts stable interest points as shown in Fig-
ure 1(b), 1(d), and 1(f). In addition, the detector selects
only nearby points, while the RGB detector selects dis-
tant points on the ceiling. The detector using depth infor-
mation selects more important features for reliable local-
ization.

Table 2 shows the localization accuracy of combina-
tions of features and the number of words K. When
the lighting condition is not stable and the viewpoint
changes, a combination of RGB features and depth fea-
tures improves the localization performance (ZestSet!
and TestSet2). Localization with only depth features
works poorly, because depth features are not robust to
changes in camera viewpoints. However, the combina-
tion of HONV features and RGB features localizes cor-
rectly 3.74% better than RGB features on ZestSerl. The
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Fig. 2 Photos from datasets used in experiments. TestSetl: (a) and (b). TestSer2: (c) and (d). TrainingSet2: (e) and (f).

TestSet3: (g) - (.

combination of DP features and RGB features localizes
correctly 14.65% better.

The localization accuracy of RGB features is less than
50% on TestSet3. Depth features shows the localiza-
tion accuracy of 72.12% and 88.05% for HONV and DP,
respectively. When depth features are combined with
RGB features, the localization accuracy is increased up
to 84.29% for DP. Depth features are not powerful when
they are used alone but they can provide additional infor-
mation when combine with other visual features as shown
for the TestSet3 dataset.

5. CONCLUSION

This paper suggested a robust localization algorithm
using depth features collected from RGB-D images.
FAB-MAP, an RGB visual slam algorithm, is modified to
use RGB-D images to improve localization robustness.
We have evaluated two depth feature models, DP and
HONWV. In experiments, we have demonstrated that the
localization performance can be improved by combining
depth features and visual features under varying lighting
conditions.
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