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Abstract— In this paper, we propose a novel contextual bandit
algorithm that employs a neural network as a reward estimator
and utilizes Shannon entropy regularization to encourage ex-
ploration, which is called Shannon entropy regularized neural
contextual bandits (SERN). In many learning-based algorithms
for robotic grasping, the lack of the real-world data hampers the
generalization performance of a model and makes it difficult to
apply a trained model to real-world problems. To handle this
issue, the proposed method utilizes the benefit of an online
learning. The proposed method trains a neural network to
predict the success probability of a given grasp pose based on
a depth image, which is called a grasp quality. We theoretically
show that the SERN has a no regret property. We empirically
demonstrate that the SERN outperforms ε-greedy in terms of
sample efficiency.

I. INTRODUCTION

Recent advances of deep learning have enabled to develop
many robotics applications that employ high dimensional
observations such as point clouds [1], or depth image [2].
In particular, a convolutional neural network (CNN) has
shown powerful performances in many image-based data-
driven methods [1]–[13]. The benefit of a CNN has been
widely employed in a robotic grasping problem [1], [2],
[4]. For example, a CNN is utilized to predict a grasp
success probability of given depth images of an object and
corresponding grasp poses [2] or to generate high-quality
grasp poses from an image of an object [1].

However, while a CNN has a large capacity to learn
high dimensional data, it often suffers from an over-fitting
problem when the number of training data is small, which
leads to poor prediction results for unseen situations. Hence,
most existing data-driven robotic grasping methods employ-
ing CNNs have focused on generating or collecting enough
training data [2]–[4]. In [3], training data are generated by
3D mesh data and by using dynamic simulators where a
depth image of objects is synthesized and corresponding
grasp poses are generated geometrically from the mesh data.
Using these data set, Mahler et al. [2] successfully trained
a neural network to predict a grasp pose given a depth
image and empirically showed that the trained network can
be applied to the the real-world grasping. In [4], Mahler et al.
extends [2] to a the real-world bin picking problem, which
is a sequential grasping problem, by augmenting the real-
world grasping data. However, using simulated data to train a
neural network has the limitation since there exists a discrep-
ancy between simulations and the real-world environment
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as mentioned in [5]–[9]. In particular, a synthesized depth
image has a different visual property from that of the the
real-world. Furthermore, when it comes to dynamics, contact
simulations may be inaccurate and not similar to the real-
world phenomena. To handle this discrepancy, [5]–[9] have
incorporated domain adaptation and domain randomization
techniques which diversify the parameters of simulations to
cover various types of dynamic environments when training
data are collected.

While diversifying simulation environments can alleviate
the lack of data, covering all possible situations using simu-
lated data requires heavy computational loads and expensive
costs. Hence, we augment efficiently the real-world data
using an online learning instead of utilizing simulated data.
In general, online learning methods have been widely used
for a robot to adapt to unexpected situations by autonomously
exploring an environment [14], [15]. Since collecting data
using a real robot is a time-consuming, efficient exploration
method plays a crucial role in practice. In [13], [16], ε-greedy
method is employed where a grasp is sampled from a uniform
distribution for exploration with probability ε. However, the
uniformly random exploration is inefficient since it does not
employ the grasp quality estimated by a neural network.
Hence, we apply a softmax distribution whose probability
of a grasp pose is exponentially weighted by its quality
estimation.

In this paper, we propose a no regret Shannon entropy
regularized neural contextual bandit algorithm for robotic
grasping where the Shannon entropy is employed to en-
courage explorations. Since the Shannon entropy induces
a softmax distribution of the grasp quality, The probability
of exploring a grasp pose is exponentially weighted by the
estimated success probability. Hence, the proposed method
randomly explores various grasp poses, but the promising
grasp poses which have highly estimated qualities are ex-
plored more frequently. We also prove that the proposed
method converges into optimal policy efficiently, which is
called no regret property. For practice, to prevent an over-
fitting issue of a CNN, we augment a core set of synthetic
datasets. In simulations, we apply the SERN to learn to grasp
unknown 3D meshes, and empirically show that the SERN
improves a grasp success rate by at most 212%. In the real-
world experiment, the SERN improves a grasp success rate
of three unseen objects from 0% to 80%.

II. RELATED WORK

Many existing robotic grasp methods have been developed
based on data-driven approaches [1]–[4], [7], [10]–[13], [17].
In general, these methods train two types of networks: grasp
quality network and grasp proposal network. The grasp
quality network predicts the success probability of given
grasp pose and information about an object to be grasped
where object information is generally given by a depth



image, RGB image, or both. The grasp proposal network
generates a grasp pose of end-effector based on given inputs
such as RGBD image. Most existing methods focused on
how to generate training data for a deep neural network
and how to generate simulated data for robust transfer
and generalization in the real-world. While [1]–[4], [7],
[10]–[13], [17] have been shown powerful results, however,
learning-based methods have the limitation in that a grasp
performance can degenerate for unseen objects which are not
included in training data. To handle this issue, online learning
approaches for robotic grasping have been investigated where
a robot is trained with sequentially generated data during the
test phase to adapt to unseen objects.

A. Robotic Grasping with Deep Learning

Learning-based robotic grasping approaches have been
developed [1]–[4], [18] where grasp poses are often predicted
by a deep neural network instead of computing grasp poses
from geometric information. These methods often utilize
a convolutional neural network (CNN) which shows high
performance for image data [2]–[4]. To train a CNN for
predicting the success probability of a grasp pose, a large
number of training examples are required. In [2], training
data are collected in simulation using given 3D mesh data.
On the contrary, image based methods [1], [18] predict grasp
poses from point cloud data. In [1], point cloud data and
corresponding grasp poses are learned with conditional vari-
ational auto-encoder where, in testing time, grasp candidates
are generated using the decoder.

While existing learning-based methods [1]–[4], [18] have
demonstrated that a deep neural network trained with syn-
thetic data can generate grasp poses of unseen objects, there
still exists an issue about applying such model to the real-
world grasping. Due to a discrepancy between simulation
and the real-world, the network trained with synthetic data
shows poor generalization performance.

B. Online Learning in Robotic Grasping

Even if existing learning-based grasping methods includ-
ing sim-to-real methods handle the discrepancy, the lack
of training data for unseen objects which have never been
simulated is still an issue. In particular, since the dynamic
contact simulation has an error compared to the real-world
contacts, the training data collected by simulations may be
imperfect in that they do not reflect the real-world contacts.

To handle this issue, the real-world data augmentation
is essential to reduce the gap between simulation and the
real-world dynamics. In [16], Dmitry et al. proposed a deep
reinforcement learning (RL) approach, called QT-Opt, which
learns to grasp with multiple robots using deep Q learning.
Dmitry et al. employed ε-greedy method for exploration. In
[13], Berscheid et al. also employed ε-greedy method or
normalized probability method whose probability is obtained
by normalizing the grasp quality.

III. BACKGROUND AND PROBLEM FORMULATION

In this section, we introduce a contextual bandit problem
and formulate a depth image based robotic grasping problem
in a contextual bandit framework.

A. Contextual Bandit Problem
A contextual bandit problem is defined by a tuple with

three elements: {S,A,R}, where S is a context space, A is
an action space, R is a reward which is a random variable
indicating goodness of an action given a context. We assume
that R ∈ [0, 1]. Then, the expected reward of pulling a ∈ A
given s ∈ S is defined as a conditional expectation of the
reward, ra(s) := E [R|s, a]. The goal of a contextual bandit
problem is to find the best arm whose expected reward is
the maximum by consecutively pulling arms and obtaining
contexts and rewards every round.

A robot plays T rounds of grasping. At the t round,
an arbitrary context st is given, then, a contextual bandit
algorithm proposes a policy πt based on st and sample
an action at from πt. The feedback of at is given as a
reward Rt. Since an expected reward ra(st) of each arm is
unknown, rewards of each arm given st should be estimated.
To estimate the expected rewards, r̂a(s; θ) is maintained
where θ is the parameter of an estimator. r̂a(s; θ) is trained
from the collected context and reward pairs. Generally, as the
number of data increases, the error of reward estimations
decreases. After estimators become accurate, the best arm
can be selected based on r̂a(s). Collecting more data to
train r̂ more accurately is called exploration and choosing
the estimated best arm based on r̂ is called exploitation. The
main hurdle of a bandit problem is the trade-off between
exploration and exploration.

The efficiency of a bandit algorithm is often measured
by the expected cumulative regret defined as RT :=∑T
t=1 maxa′ Es1:t,a1:t−1 [ra′(st)− rat(st)] , where s1:t indi-

cates contexts given during t rounds and a1:t−1 indicates
actions selected during t−1 rounds. If the algorithm focuses
on exploring arbitrary arms, RT linearly increases. On the
contrary, if the exploitation is focused, the estimation error
of rewards is hardly reduced and RT also linearly increases.
When RT increases sub-linearly, such algorithms are called
no regret and the error converges to zero as the number of
rounds increases, i.e., limT→∞

RT

T = 0.

B. Problem Formulation
We formulate the problem of finding a grasp pose using a

depth sensor as a contextual bandit problem. For a grasping
problem, S is depth images that contain information about
objects to grasp and A is grasp poses of a gripper of a
manipulator and we assume a parallel jaw gripper. Hence,
a grasp pose is defined as a four dimensional vector that
combines a grasp point x, y, z and a rotation angle θ with
respect to the z-axis. All continuous variables are discretized.
The reward R is defined as a binary random variable that in-
dicates the success of grasping. R = 1, if grasp is succeeded,
R = 0, otherwise. Then, a deep neural network estimates the
expected rewards ra(s) that indicates the success probability
of grasping, similarly to prior work [2]–[4].

IV. SHANNON ENTROPY REGULARIZED NEURAL
CONTEXTUAL BANDIT ALGORITHM

In this section, we propose a Shannon entropy regularized
neural contextual bandit algorithm (SERN) by utilizing an
artificial neural network as a reward estimator and exploring
various actions due to entropy maximization. The main
difference of the proposed method from existing regularized
bandit algorithms is that we do not assume unbiased estima-
tion such as a linear model or Gaussian process regression.



Furthermore, we analyze the upper bound of the cumulative
regret of SERN and show that it is no regret. Thus, the
proposed method enables to use a neural network which has
the large capacity and shows a powerful performance for
high dimensional data while maintaining no regret property.

A. Shannon Entropy Regularization for Exploration

For each round, the SERN estimates rewards r̂a(st; θ) for
given depth image st where θ is a parameter of a neural
network, and computes a policy πt which is computed as
follows:

πt(st) := arg max
π∈Π
{Ea∼π [r̂a(st; θt−1)] + αS(π)} , (1)

where S(π) := Ea∼π[− ln([π]a))] is the Shannon entropy,
and α is a regularization coefficient. It is well known fact that
the solution of (1) is a softmax distribution. Hence, πt(st) =
exp(r̂a′(st; θt−1)/α)/

∑
a′ exp(r̂a′(st; θt−1)/α).

We sample a grasp pose at ∼ πt and try the sampled grasp
by controlling a robot. We collect a set of context, action
and reward (st, at,Rt) and update the parameter θt−1 to θt
based on collected data using a stochastic gradient descent
to minimize the estimation error.

In practice, since it is not possible to run a the real-
world robot infinitely often, it is important to improve sample
efficiency. Furthermore, a neural network has the limitation
in that, if the number of training data is not enough, the net-
work is easily over-fitted which causes a poor generalization
performance. To handle this issue, we utilize a pretrained
model from [2] and augment a subset of pretraining data to
newly collected data.

B. Pretrained Model and Core Set Selection

We initialize the grasp quality network using the pretrained
model. By doing so, the sample efficiency can be improved
by rejecting trivially infeasible grasp poses. In this paper,
the pretrained model of [2] is utilized but we would like to
note that the other model also can be used. After collecting
several trials, we fine-tune the pretrained model to adapt to
unseen objects. We initialize a parameter of grasp quality
network with θ0 of the pretrained model.

Let us denote the training data set used for pretraining as
D0, and the newly collected data from online learning as D.
When we fine-tune the pretrained model, catastrophic forget-
ting [19] occurs where the model forgets the information of
D0 after fine-tuning the network over newly collected dataset
D. Since the number of data D can be limited, fine-tuning
the grasp quality network can be easily over-fitted to D and
can easily forget the pretrained information D0.

To prevent a catastrophic forgetting, we select a subset of
pretraining data C ⊂ D0 and augment them to D0 during the
online learning. While using entire set D0 may improve the
entire performance and more effectively prevent catastrophic
forgetting, it has disadvantages in that a large number of data
set requires more computational resources and makes the
whole learning processes slow. Thus, we select an important
subset from D0 by employing a determinantal point process
method (DPP) [20] which can sample k points covering D0

uniformly. We first transfer all training data to a feature space
using the pretrained CNN and choose 172 subset of D′ using
the DPP on features of data points. The entire algorithm is
summarized in Algorithm 1.

Algorithm 1 Shannon Entropy Regularized Neural Contex-
tual Bandit Algorithm (SERN) for Grasping

Input: p ∈ (0, 1/3), T , θ0, D0, and k
Initialize α = 1/ ln(T p)
D = DPP(D0, k) [20]
for t = 1, · · · , T do

A context st is given and agent chooses at ∼ πt where
πt := arg maxπ {Ea∼π [r̂a(st; θt−1)] + αS(π)}
Agent gets a reward Rt and stores (st, at,Rt) into D
θt = arg maxθ

∑
(st,at,Rt)∈D |Rt − r̂at(st; θ)|

end for

V. THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of our
algorithm. We prove that a regret of the proposed method
grows sub-linearly and, thus, it has no regret property. By
deriving the no regret property of the SERN, it is guaranteed
that using a neural network with the softmax policy can find
an optimal policy of the contextual bandit problem. Before
starting the analysis, we introduce some assumptions for a
reward function, a neural network, and its error bounds.

A. Assumption
Assumption 1 (Separable Reward Structure). Define the
reward gap as ∆a(s) = maxa′ ra′(s) − ra(s) for given
s. Note that mina ∆a(s) = 0 at the best arm a? =
arg maxa′ ra′(s). Let the second minimum reward gap be
∆2(s) = mina6=a? ∆a(s). Then, we assume that ∆2(s) > 0
for all s and define ∆2 := mins ∆2(s)

Assumption 2 (Rewards Estimation). For each arm a, we
have the reward estimator r̂a(s; θna) where na is the number
of training data for r̂a collected by pulling a and θ is the pa-
rameter of r̂a. We assume that the parameter has the least er-
ror, i.e., θna

= arg minθ Es1:na
[
∑na

i=1 |ra(si)− r̂a(si; θ)|].
Assumption 3 (Error Bound or Sample Complexity). We as-
sume the upper bound of the error of a reward estimation as
follows: ∀s ∈ S E [|ra(s)− r̂a(s; θna

)|] < β
√

1/(na + 1)
where β is a positive constant depending on an estimation
model and a learning algorithm. When na data are given, the
expected error decreases proportionally to the square root of
the number of data.

Assumption 1 indicates a given reward function is not
trivial. If ∆2 = 0, then, it means there is no second optimal
arm and rewards for all arms are the same. Assumption
2 and 3 generally hold for a deep neural network. For
Assumption 2, we believe that the best parameter for given
training data can be achieved by using general optimization
techniques for a deep neural network. For Assumption 3,
in [21], Barron showed that the regression error bound of
a neural network follows O(1/

√
n) and, in [22], Suzuki

showed that it is bounded by O(log+(
√
n)/n) ≤ O(1/

√
n).

Thus, our assumptions generally hold.
The proof strategy of no regret property consists of two

parts. We first show that our algorithm explores every arm
infinitely often. Then, we prove that infinite explorations
eventually reduce the estimation error small enough and,
after that, the best arm can be verified. While the proposed
method explores every arm infinitely, the ratio of choosing
each arm is exponentially proportional to its estimated re-
wards. Hence, we can achieve the sub-linearly growth ofRT ,



which is no regret. Note that the detail proofs are omitted
here and can be found in the supplementary [23].

B. Exploration Ratio

In this section, we analyze the ratio of the time sub-optimal
action is selected. Furthermore, this ratio controls the number
of data for each reward estimation. Let Na(t) be a random
variable indicating how many times an arm a is selected
during t rounds.

Theorem 1. For any arm a, the expected count has the fol-
lowing lower bound, E [Na(t)] ≥ ct where c = 1

K exp(− 1
α ).

Theorem 1 tells us that the lower bounds of Na(i) linearly
grows. Since limt→∞ ct =∞, the expectation of Na(i) goes
to infinity. Thus, the proposed method explores every arm
infinitely many. From this fact, it can be observed that every
arm is explored infinitely many times. Using Theorem 1, we
can derive the upper bound of the tail probability of Na(t).

Theorem 2. For any arm a, let N ′t := Na(t)− ct. Then, N ′t
is submartingale and, from this fact, the following inequality
holds, for any δ > 0, P(Na(t) < ct− δ) ≤ exp

(
−δ2/(8t)

)
.

The proof can be found in the supplementary [23]. This
theorem tells us that the probability that random variable
Na(t) is below the expected lower bound has an exponential
upper bound with respect to its deviation δ. Using this upper
bound, we can control the error term β

√
1/(n+ 1) of a

neural network.

C. Upper Bounds for Expected Cumulative Regret

Now, we prove the no regret property of SERN. We first
derive the general upper bound of the cumulative regret and
derive more specific bounds by controlling α. Then, finally
we show that the proposed method is no regret.

Theorem 3. For α > 0 and 1 > q > 0, the expected
cumulative regret of SERN is bounded by

β

T∑
t=1

E
[
(Na?(t− 1) + 1)−

1
2

]
+ β

T∑
t=1

E
[
(Nat(t− 1) + 1)−

1
2

]
+

T∑
t=1

P(a? 6= â?t−1) + α ln(K)T,

where K = |A|, a? = arg maxa Es [ra(s)], and â?t =
arg maxa Es [r̂a(s; θt)].

The first and third term comes from the estimation error
of a neural network, the second term comes from the
failure probability of a neural network for discriminating
the best arm, and the last term indicates the regret induced
by Shannon entropy regularization. Before deriving detail
upper bounds, we would like to give some intuition of proof
strategies for each term. The first and third term will be
bounded by using Theorem 1 and 2. Furthermore, we prove
that the second term has a constant bound using Assumption
1. Note that we assume that there always exists a positive gap
∆ between the optimal and sub-optimal arms. Thus, if our
estimation error becomes below ∆, then, after that point, we
can discriminate the best arm from other sub-optimal arms.
Finally, the last term will be bounded by controlling α. The
entire bound can be derived as follows.

(a) KIT [24] (b) T-Less [25] (c) Real Objects

Fig. 1: Objects

Theorem 4. Let α = α0

ln(Tp) for α0 > 0. Then, the expected
cumulative regret of SERN is bounded by

C0

c
3/2
0

T
3p+1

2 + C1

(
1− exp

(
−c20d1T−2p))−1

+ C2

(
1− exp

(
−c20d2T−2p))−1

+ α0 ln(K)T (ln(T p))−1 ,

where c0 = exp(−1/α0), C0 = 2
7
2K

3
2 β, C1 = 2βK, C2 =

2(K − 1) exp((β/∆2)2 − 1/4), d1 = 1/(32K2), and d2 =
1/(8K2).

The first and second terms, the expectations of the
estimation errors, are bounded by O(T

3p+1
2 ) + O((1 −

exp(−d1T
−2p))−1). The third term P(a? 6= a?t−1) is

bounded by O((1 − exp(−d2T
−2p))−1). The last term is

bound by O(T (ln(T p))−1). By using Theorem 4, we can
show no regret property as follows.

Theorem 5. For 1/3 > p > 0, if the number of rounds, T ,
goes to infinity, then, time-averaged regret converges to zero:
limT→∞RT /T = 0.

Theorem 5 tells us the proposed method eventually find the
best arm for given context. Entire proof can be found in the
supplementary [23]. Here, we provide a proof sketch. From
Theorem 4, we have the upper bound of RT which consists
of four parts. First, since the first term and forth term fol-
low O

(
T

3p+1
2

)
and O

(
T (ln(T p))−1

)
, respectively. Hence,

limT→∞O
(
T

3p+1
2

)
/T = limT→∞O(T

3p−1
2 ) = 0. Fur-

thermore, since 3p−1 < 0, limT→∞O
(
T (ln(T p))−1

)
/T =

0. Finally, the limit of the second and third terms can be
proven by showing that limx→∞(x(1− exp(−ax−b)))−1 =
0. The entire proof can be found in the supplementary [23].

VI. EXPERIMENTAL RESULTS

To verify our theorems and effectiveness of the proposed
exploration method, we conduct both dynamic simulation
and the real-world experiments.

A. Setup
In the dynamic simulation, we compare three exploration

methods including ours. First, a greedy method is compared
as a baseline model which simply tries the best grasp
whose estimated grasp quality is the maximum. Second, we
compare a ε-greedy method which selects the best grasp pose
with probability 1−ε and chooses a uniformly random grasp
with probability ε. The ε-greedy method has been widely
used in many existing methods. For ε-greedy method, we set



Obj. Alg. Round 1. Round 2. Round 3. Round 4. Round 5. Max. Imprv.

Marjoram SERN 52% (±4.90) 72% (±10.20) 88% (±6.32) 75% (±11.66) 75% (±6.32) 88% 44%
ε-Greedy 72% (±4.90) 55% (±4.90) 61% (±9.80) 76% (±10.20) 70% (±6.32) 76% −3%
Greedy 48% (±12.00) 60% (±6.32) 64% (±7.48) 68% (±10.20) 68% (±8.00) 68% 42%

SaltCylinderSmall SERN 68% (±10.20) 60% (±10.95) 56% (±9.80) 56% (±11.66) 76% (±11.66) 76% 12%
ε-Greedy 64% (±11.66) 52% (±12.00) 60% (±8.94) 60% (±8.94) 56% (±4.00) 64% −13%
Greedy 64% (±11.66) 52% (±10.20) 48% (±4.90) 40% (±6.32) 48% (±10.20) 64% −25%

BathDetergent SERN 36% (±13.27) 48% (±13.56) 48% (±8.00) 60% (±6.32) 64% (±7.48) 64% 78%
ε-Greedy 60% (±16.73) 52% (±13.56) 48% (±12.00) 60% (±18.97) 52% (±16.25) 60% −13%
Greedy 36% (±11.66) 40% (±6.32) 36% (±9.80) 60% (±6.32) 20% (±6.32) 60% −44%

T-Less 10 SERN 56% (±7.48) 74% (±10.20) 52% (±14.14) 71% (±12.00) 81% (±7.48) 81% 45%
ε-Greedy 52% (±4.90) 50% (±9.80) 61% (±12.00) 71% (±8.00) 73% (±13.56) 73% 40%
Greedy 36% (±7.48) 50% (±7.48) 49% (±7.48) 55% (±9.80) 69% (±16.00) 69% 92%

T-Less 20 SERN 72% (±8.00) 60% (±10.95) 60% (±6.32) 72% (±10.20) 84% (±4.00) 84% 17%
ε-Greedy 72% (±8.00) 60% (±6.32) 44% (±4.00) 68% (±4.90) 68% (±4.90) 72% −6%
Greedy 68% (±10.20) 76% (±4.00) 60% (±6.32) 64% (±9.80) 68% (±13.56) 76% 0%

TABLE I: Grasp success rate in simulation. The number in the parenthesis indicates a standard deviation. Obj. indicates a
name of 3D mesh in KIT and T-Less dataset. Max. is the maximum success rate achieved during five trials. Imprv. is a
performance improvement after training compared to the first performance, which is computed as (r5 − r1)/r1 where ri is
the ith success rate. The best performances are marked in bold.

ε to be 0.1. Finally, we compare the SERN with α = 0.05.
ε and α are selected by the brute force search.

Furthermore, we employ the grasp quality network and
training dataset of Mahler et al. [2] as a pretrained model θ0

and pretrained data D0, respectively. We samples k = 172
grasping examples from data in D0. For each round, we
generate 64 grasp candidates and corresponding qualities
from a given depth image using the pretrained model.
We sample one grasp among 64 grasps by applying three
sampling methods: greedy, ε-greedy, and SERN. By doing
so, we can fairly verify effects of the sampling methods
since all methods share the pretrained network and only
differences are the exploration method. Each round consists
of a exploration and evaluation phase. In exploration phase,
we collect 20 grasp, image, and result pairs and update
the grasp quality network with gathered data. In evaluation,
we run the updated network 5 times by selecting the best
grasp to verify the actual performance without an effect of
exploration.

For the dynamic simulation, a GAZEBO simulator [26]
is used with an open dynamics engine [27]. We utilize 3D
mesh dataset from KIT [24] and T-Less [25]. As shown in
Fig. 1(a) and 1(b), we select four mesh models from [24]
and two mesh models from [25], respectively, which are
hardly grasped by the pretrained model [2] in simulations.
All algorithms run with five random seeds.

In the the real-world experiment, we compare two meth-
ods: ε-greedy and the proposed method. We also conduct
both exploration and evaluation steps separately. In explo-
ration, we gather 5 grasp examples and, in evaluation, we
measure 5 grasp tests. We select three objects: triangle,
round stapler, and vertical mouse, which are hardly grasped
by a parallel jaw gripper due to its rounded surface and
nonparallel shape as shown in Fig. 1(c). We use a Baxter
robot which has a 7 DoF manipulator to grasp the objects
and a RealSense D435 depth camera.

B. Simulation Results
We measure the improvement of grasp success rate be-

tween the first and last performance, and the maximum grasp
success rate among success rates of five rounds. The results
are shown in Table I.

The greedy policy without exploration shows the worst
performance in terms of the maximum performance and

Obj. Alg. Rnd 1. Rnd 2. Rnd 3. Rnd 4. Rnd 5.

Triangle SERN 0% 20% 20% 60% 80%
ε-Greedy 0% 20% 0% 40% 40%

Stapler SERN 0% 0% 40% 80% 80%
ε-Greedy 0% 0% 40% 0% 40%

Mouse SERN 60% 60% 80% 80% 80%
ε-Greedy 0% 20% 20% 20% 20%

TABLE II: Grasp success rate in the real-world experiments.
Rnd i indicates the ith round. The best performances are
marked in bold.

final performance. From this observation, it is shown that
exploration is essential for learning to grasp. Since the greedy
policy tries similar grasps when gathering 20 exploratory
grasp examples, it cannot gather diverse training data, which
causes the over-fitting issue. On the contrary, the SERN
and ε-greedy method show better performance than the
greedy method. In particular, the proposed method, SERN,
outperforms other methods in terms of both maximum grasp
success rate and final grasp success rate. In all cases, after
training for five rounds, the grasp success rates of SERN are
improved compared to initial performances. In particular, the
success rate for the CokePlastic increase by 212%.

While ε-greedy method outperforms the greedy method
in three objects as shown in Table I, it shows poorer per-
formance than the SERN. Since the SERN samples a grasp
based on a softmax distribution of estimated grasp qualities,
potentially feasible grasp poses are first searched. The ε-
greedy method, however, explores all grasp poses randomly
and it causes inefficiency of exploration in practice. Since we
employ the pretrained network, sampling a grasp pose based
on the grasp quality estimation from the pretrained network
shows better performance while ε-greedy method . Thus, the
SERN shows the best performance compared to greedy and
ε-greedy method.

C. the real-world Results
The results are shown in Table II. In the real-world

experiments, the SERN outperforms the ε-greedy method.
In particular, for the Mouse object, the SERN finds success
grasps much faster than ε-greedy so that it achieves 60%
success rate at the first round and outperforms 80%. These
results support the fact that using softmax distribution has
benefits over the ε-greedy method since it frequently explores



the grasp poses that has the high chance of success. Fur-
thermore, the softmax distribution is more suitable than the
ε-greedy method to employ the pretrained model. From this
reason, the SERN generally shows the better performance
than the ε-greedy method.

The main benefit of SERN compared to ε-greedy is
the exploration tendency. In ε-greedy, the exploration is
conducted by an uniform distribution. Thus, ε-greedy tries
random grasps with ε ratio. On the contrast, SERN combine
both exploitation and exploration since the greedy action has
the largest probability mass and the other actions have the
probability mass proportional to its grasp quality.

However, SERN tries more promising grasps which have
the potential to successfully grasp the object. In SERN,
P(at = a) is proportional to exp

(
Q̂a

)
where Q̂a is a grasp

quality of the grasp a. Thus, we can conclude that exploration
with soft max distribution has the benefit in practice.

VII. CONCLUSION

In this paper, we have proposed a novel Shannon entropy
regularized neural contextual bandit online learning (SERN)
and have applied SERN to learn to grasp unknown objects.
We also proved that SERN has no regret properties and its
error converges to zero. In both simulation and the real-world
experiments, we empirically show that SERN outperforms
a ε-greedy method and improves the grasp performance
efficiently.
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K. Kohlhoff, T. Kröger, J. Kuffner, and K. Goldberg, “Dex-net 1.0:
A cloud-based network of 3d objects for robust grasp planning
using a multi-armed bandit model with correlated rewards,” in IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2016, pp. 1957–1964.

[4] J. Mahler and K. Goldberg, “Learning deep policies for robot bin pick-
ing by simulating robust grasping sequences,” in Proceedings of the 1st
Annual Conference on Robot Learning, ser. Proceedings of Machine
Learning Research, S. Levine, V. Vanhoucke, and K. Goldberg, Eds.,
vol. 78. PMLR, 13–15 Nov 2017, pp. 515–524.

[5] S. James, A. J. Davison, and E. Johns, “Transferring end-to-end
visuomotor control from simulation to real world for a multi-stage
task,” in 1st Annual Conference on Robot Learning, CoRL 2017,
Mountain View, California, USA, November 13-15, 2017, Proceedings,
2017, pp. 334–343.

[6] J. Tobin, L. Biewald, R. Duan, M. Andrychowicz, A. Handa, V. Kumar,
B. McGrew, A. Ray, J. Schneider, P. Welinder, W. Zaremba, and
P. Abbeel, “Domain randomization and generative models for robotic
grasping,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2018, Madrid, Spain, October 1-5, 2018,
2018, pp. 3482–3489.

[7] A. Zeng, S. Song, K. Yu, E. Donlon, F. R. Hogan, M. Bauzá,
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[25] T. Hodan, P. Haluza, S. Obdrzálek, J. Matas, M. I. A. Lourakis, and
X. Zabulis, “T-LESS: an RGB-D dataset for 6d pose estimation of
texture-less objects,” in 2017 IEEE Winter Conference on Applications
of Computer Vision, WACV 2017, Santa Rosa, CA, USA, March 24-31,
2017, 2017, pp. 880–888.

[26] N. Koenig and J. Hsu, “The many faces of simulation: Use cases for
a general purpose simulator,” in International Conference on Robotics
and Automation, ICRA 2013, vol. 13, 2013, pp. 10–11.

[27] R. Smith et al., Open dynamics engine, 2005.

http://arxiv.org/abs/1905.10520
http://arxiv.org/abs/1806.10293
http://rllab.snu.ac.kr/publications/papers/2020_icra_sern_supp.pdf

	Introduction
	Related Work
	Robotic Grasping with Deep Learning
	Online Learning in Robotic Grasping

	Background and Problem Formulation
	Contextual Bandit Problem
	Problem Formulation

	Shannon Entropy Regularized Neural Contextual Bandit Algorithm
	Shannon Entropy Regularization for Exploration
	Pretrained Model and Core Set Selection

	Theoretical Analysis
	Assumption
	Exploration Ratio
	Upper Bounds for Expected Cumulative Regret

	Experimental Results
	Setup
	Simulation Results
	the real-world Results

	Conclusion
	References

