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Abstract— This paper presents a novel class of self-organizing with a gradient ascent strategy for tracing the maximum
multi-agent systems that form a swarm and learn a spatio- of an unknown field via radial basis function learning were
temporal process through noisy measurements from neighber proposed by [10].

for various global goals. The physical spatio-temporal proess PR . - .
of interest is modeled by a spatio-temporal Gaussian proces Our motivation is to design the mobility of sensing agents

Each agent maintains its own posterior predictive statists for various tasks by intelligently dealing with uncertgint
of the Gaussian process based on online measurements fromin the estimation of a spatial phenomenon based on online
neighbors. A set of biologically inspired navigation straégies measurements, and exploiting the posterior predictiviéssta
are identified from the posterior predictive statistics. A wified s which will lead to “learning agents”. In maximizing an

way to prescribe a global goal for the group of agents is o . . . -
preéemeg_ A referenge traje%tory state thgt gSides aggenta) objective function, we are interested in achieving the glob

achieve the maximum of the objective function is proposed. Maximum rather than obtaining usual local maxima. _
A switching protocol is proposed for achieving the global In our approach, the dynamical phenomenon in the surveil-

maximum of a spatio-temporal Gaussian process over the |ance regiorR will be specified by a spatio-temporal Gaus-
surveillance region. The usefulness of the proposed multigent  gjan process. A Gaussian process (or Kriging in geoststi
system with respect to various global goals is demonstratebly has been widelv used as a nonlinear rearession technigue
several numerical examples. ) y ) o 9 q
to estimate and predict geostatistical data [16], [17],],[18
. INTRODUCTION [19], [20]. A spatio-temporal Gaussian process,t) ~

In recent years, significant enhancements have been mg@B(1(s, 1), K({s,t},{s",1'})), s(t),s' (') € R,t,t" € Zy
in the areas of sensor networks and mobile sensing agerifs.SPecified by its mean functiop(-,t) and a symmet-
Emerging technologies have been reported on coordination'dc Positive definite covariance functiol(-,-). Gaussian
mobile sensing agents [1], [2], [3], [4], [5], [6], [7], [8]9],  Processes enable us to predict physical values, such as
[10], [11]. Mobile sensing agents form an ad-hoc wirelesi€mperature and plume concentration, at any of spatiatpoin
communication network in which each agent operates usuarg;lh a predicted uncertainty level. A class of spatio-terapo
under a short communication range and some computatiofg®ussian processes has been extensively investigated in th
power. Among challenging problems of distributed coordiform of combining spatial Gaussian processes and Kalman
nation of mobile sensing agents, tracing the maximum of afltering, which became so-called “space-time Kalman filter
unknown field has attracted much attention of control engl21], [22], [23], [24]. This model will be used in the paper.
neers. This has numerous applications including homelaf£cently near-optimal static sensor placements with aahutu
security, toxic-chemical plume tracing and environmentdPformation criterion in Gaussian processes were proposed
monitoring. For instance, the most common approach t*éy [25]. Dlstrlbuted_Knged Kalman filter for spatial estima
toxic-chemical plume tracing has been biologically insgir tion based on mobile sensor networks are developed by [9].
chemotaxis [12], [13], in which a mobile sensing agent is Asymptotic o_ptlmaht_y of_mul_tlcenterVoronm configuratie
driven according to a local gradient of the chemical pluméer random field estimation is reported by [8]. o
concentration. However, in this case, the convergence rate! he contribution of this paper is to introduce coordination
can be slow and the mobile robot may easily get stuck in trl9orithms that exploit posterior predictive statistigenfi
local maxima of chemical plume concentration. Thus, robo@ Gaussian process learning mechanism. Combined with a
require some “artificial intelligence” for them to estimated ~ flocking algorithm [5], [6], [10] for distributed sampling,
predict global features of a spatio-temporal field based onthis approach provides an “artificial intelligence” to each
samples in different time and space, which will be discusse@geént to form cooperatively learning mobile agents that
mainly in this paper. The cooperative network of agentgerform useful taskg. Depen.o_llng on the 'gasks for the sensing
that performs adaptive gradient climbing in a distribute@9ents, the collective mobility of sensing agents can be
environment was presented in [14], [15]. The centralized€signed for various performance criterions. In particlda
network can adapt its configuration in response to the sensg@f of navigation modes (tracing, avoidance, exploratith w
environment in order to optimize its gradient climb. respect to the predicted field) for swarming agents is pre-

Many of the mobility of the mobile agents are designe(ﬂ:'seb’ prescrl_bed bas_ed on_the_ recursively quated Gawssia
based on a certain field of interest. Recently distributeBrOCeSS. An interesting switching protocol is introduced t
interpolation schemes for field estimation by mobile sensdtvercome the tradeoff between exploitation and explomatio

networks are developed by [7]. Swarming sensing agen\(\gwlch leads to 'ghe _global maximum. The usefulness of the
proposed coordination algorithm is demonstrated by sévera
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strategy of the cooperative learning control can be appbed A, i.e., D(A) := diag(zl;V;1 a;;). The 2-dimensional graph

a large class of coordination algorithms for mobile ageots t) gpjacian is defined ad. := L ® I,, where ® is the
deal with the field of interest that requireS to be reCUryiVelKronecker product. A quadratic disagreement function [6]
estimated. _ _ can be obtained via the Laplacidn

This paper is organized as follows. In Section Il, we
briefly review the mobile sensing network model, notations Ue(p):=p Lp= 1 Z aijllp; — pill% (3)
related to a graph, and artificial potentials to form a swarm- (.7 e ()
ing behavior. A recursive learning algorithm for estimat- '
ing parameters and predicting a spatio-temporal Gaussiamerep := col(p1, p2,- - ,pn.) € R*Ve.

process is presented in Section Ill. Section IV explain : :
the biologically inspired navigation and a unified way toé‘ A Swarrming Behavior
prescribe the global goal for agents. A reference trajgctor In order for agents to sample measurements of a scalar
state that guides agents to achieve the global maximum @¢!d at spatially distributed locations simultaneouslgraup

the objective function is presented as well. In Section VOf mobile agents will be coordinated by a flocking algorithm
the resulting cooperatively learning control is described[6], [5], [10]). We use attractive and repulsive smooth
In Section VI, we numerically test agents under differenpotentials similar to those used in [5], [6], [10] to generat
navigation strategies and a switching protocol with respegwarming behavior. To enforce a group of agents to satisfy a
to several configurations and different Gaussian processe&et of algebraic constraintg; —g;|| = d for all j € N(i, q),

we introduce a collective potential
1. PRELIMINARIES

In this section, we explain notations and concepts that will U1(@) == Y > Uij(la: — ¢;1*) = D> Usi(ryy), (4)
arise throughout the paper. A E i g
A. Mobile Sensing Agent Network wherer;; := |lg; — g;]1. Ui; in (4) is defined by

First, we explain the mobile sensing network and sensor 1 a+ d? . 9
models used in this paper. L&t be the number of sensing Uij(rij) = 5 log(a + 1) + atr )’ if ri; <dg, (5)
agents distributed over the surveillance regiRn C R2. _ _ o _J .
Assume thafR is a compact set. The identity of each agenetherwise (i.e.,r;; > dg), it is defined according to the
is indexed byZ := {1,2,---,N,}. Let ¢;(t) € R be the gradient of the potential, which will be described shortly.
location of thei-th sensing agent at timee R, and let Herea,d € Ry andd < do. The gradient of the potential

q = col(qi,q2,--- ,qn,) € R*N¢ be the configuration of W.r.t. ¢; for agenti is given by
the swarm system. The discrete time, high-level dynamics oU O+
of agenti is modeled by VUi(q) == 81@@ ia (;JT(T) . la—q)
Gt +1) = ait) + epi(), W gy _
pi(t +1) =pi(t) + ew;(t) ° Dt e if rij <d?
where ¢ is the iteration step size (or sampling time). diziP (\I/d:_J—:leU) !Zi;gjl' (¢; —q;) otherwise,
a,pi,u; € R? are, respectively, the position, the velocity, (6)
and the input of the mobile agent. We assume that the . .
measuremeny(¢;(t), t) of sensori includes the scalar value Wherep : R, — [0, 1] is the bump function
of the field z(¢;(t), t) and sensor noise(t), at its position 1 2 e[0,h);
¢i(t) and the measurement time ’ N o
p(z) =4 % {1 + cos (ﬂ' Ei:hg)] , z€[h1];

B. A Graph : ; ;
) _ _ that smoothly varies fronh to 0 as the scalar input increases.

The group behavior of mobile sensing agents and thejp equations (4), (5), and (6) was introduced to prevent the
complicated interactions with neighbors are best treajea b reaction force from diverging at; = ||¢: — ¢;]|> = 0. This
graph with edges. Le&F(q) := (Z,£(q)) be acommunication potential yields a reaction force that is attracting whea th
graph such that an edde, j) € £(q) if and only if agent agents are too far and repelling when a pair of two agents are
i can communicate with agent i. We assume that each toq close. It has an equilibrium point at a distancelofVe
agent can communicate with its neighboring agents within gso introduce a potentidf, to model the environment/,
limited transmission range given by a radiusroffherefore, enforces each agent to stay inside the closed and connected
(i,7) € €(q) if and only if ||g;(t) — ¢;(t)|| < r. We define syrveillance regiorR and prevents collisions with obstacles
the neighborhood of agentwith a configuration ofg by jn R. We constructU, such that it is radially unbounded in
N(i,q) == {j : (i,5) € &(q),1 € I}. The adjacency g je.,
matrix A := [a;;] of an undirected graply is a symmetric Us(q) — oo as||q|| — oo. (7)
matrix such thaw;; = ks > 0 if vertex ¢ and vertex;j are ] o _
neighbors andi;; = 0 otherwise, wherés; is a p]\(])sit]i\ye Define the total artificial potential by
scalar. The scalar graph Laplacidn = [I;;] € RVY=*"= ,_
is a matrix defined ad := D(A) — A, there D(A) is Ula) i= k1Ui() + k2Uz2(a). ®
a diagonal matrix whose diagonal entries are row sums efherek; > 0 andks > 0 are weighting factors.



I1l. L EARNING AGENTS FORGAUSSIAN PROCESSES P(t|t) be the covariance matrices 6ft|t — 1) and 6(¢|t)
To model the noisy measurement of the dynamical randoffgSPectively. For (13) and (14), the standard Kalman filter
field z(s,),s € R, consider the space-time Kalman filter[26] provides the measurement updates:

model or the spatio-temporal Gaussian process [22], [2 }( 1

[24], [9]: P(tlt = 1)@7(t) [So(t) + ()Pt — 1)@T(¢)]
2(5,8) = (s, 2) +5(5,1) o <t|t> =t} = 1) + K5 () [Y (1) - 20t — 1))
~ GP(u(s, 1), K({s,t}, {s",t"})), P(tlt) = [I — K¢ ()®(t)]|P(t]t — 1),
wheres, s* € R, t,t* € Z,. The mean fieldi(-, t) is a linear (16)
function of the temporal staté(t): and the predictions:

5:t) = i@(sww — @0, oy 01D =FOIE-1)

+ POE;(O]Y (1) — (0)0(t]t — 1)),
where¢” (s) and(t) are respectively by P(t+1[t) = FO)P(t|t = )FT(t) + G(H)Q()G™ (t)
6T(W) = d1(s) da(s) - om(s) ) € RX™ — F() K (6)[Zu(t) + @) P(t]t — 1)@ (6)]
T
0) == ((61(t) Ba(t) - Bm(t) )" € R™ KO 17)

Gaussian kernels;(s) are given by For a fixedd(t), we have the following :

_ _,cll12
61(5) 1= - exp (%) | A1) Za() = Cov(z(s, ), 2(s,)[6(1)) = A(s.5).
n 1 Sy (t) :=Cov(Y (1), Y (2)]0(t)) = Z,(t), (18)
where o, is the width of the Gaussian basis adg is a Xy, (t) = 1y () := Cov(Y (1), 2(s,1)|0(1)) = ¥(s),
normalizing constant/$ for j € {1,---,m} are uniformly

distributed in the surveillance reg|oﬁ, We also specify Where Coyz,y) := E(z — Ex)(y — Ey)" and ¢(s) :=
a prior over 6(0) by 6(0) ~ N (o, (0)). The spatial [%(s:,s)] € R". From the Kalman filter, we have
correlation can be further prescribed by the zero-mean-Gaus .

sian process(s,t) ~ GP(0,K({si,t:},{s;,t;})) with a 0t)[Y<r == {Y(t),-- . Y(1)} ~ N(O(t]t), P(t]t)).
covariance matrixiC({s;,t;},{s;,t;}) = K(si,5;)0(t,.t,)s

whered., is the Kronecker delta and The posterior predictive distribution of(s,¢) conditioned

on Y<; can be obtained by marginalizipgz(s, t)|6(t), Y<¢)

s — .12 overp(A(t)|Y<,):
K(S:,85) == iexp <7|SZ 5 sill > . (12) PO(O)Y<r)
Z o 25, 1]t) 1= 2(5,1) | Y ~ N (35, 1]t), 0%(s,2[1)) . (19)
The dynam|cal part of the spat|o temporal Gaussian proces .
and the noisy observation are given by whereZ(s, t[t) := E{z(s,t[t)} is:
0t +1) = F(1)0(t) + G()u(t) € R™, 13) 0= o7 (s)0(t]t) + Sy (£) 271 (1) (Y( ) — B(t (t|t)> :

)0
T
Yost) = 0T el ) ll) € — ST (0010 + 0 ()55 (1) (Y () — D00
whereu(t) ~ N(0,Q(t)) andw(t) ~ N(0,02) are respec-
tively the usual zero-mean system noise and the uncordelatgnd o2(s,t|t) is given by

measurement noise.
Suppose that at time, agenti can collect observations o2 (s, t|t) := ¥.(t) — X,y ()2 ()25 (1)

Y(t) :== [y(qi(t),t), - ,y(gn(t), )]’ taken at then sites Ty _ Sy 1(1) P(tlt vy oy le)T
{qu(t),--- ,qn(t)} by itself and itsn — 1 number of neigh- +07(s) ~ By ()PE(S(s) = Doy By 2(1))
bors, then we have: = r(s,8) =97 ()8, ( J¥(s)

Y ) = (00(E) + o(t) € R” PR OB Ot DU DICHORUOR O
where &(t) = [6(q1(t)), -, d(qa ()T and v(t) ~ The last term is due to using the MMSE estiméte) as
N(0,%,()). Here we assume that agentan compute the compared to applying a simple kriging or a prediction of
covariance function by the Gaussian process for a know(). This formulation

is a popular way to embed a finite humber of determin-
So(t) = ([r(g;(t) — q; ()] + diago2,, - -+ ,02,)) € R**", istic kernels to represent a mean trend [27], [21], [20],
(15) [9]. This algorithm combines parametric and nonparametric
whereo?,; are due to sensor noise and communication noissstimations, which is robust w.r.t possible mismatchesién t
between agent and neighboring agents. selected radial basis functions that parameterize the mean
Let A(¢|t —1) andd(t|t) be the estimates @f(¢) based on trend. In the following section, navigation strategieseshs
the observations obtained to times1 and¢. The estimation on the spatial prediction and the estimated uncertainty in
error isé(t|t — 1) := 6(t) — 0(¢|t — 1). Let P(t|t — 1) and (19) are presented.



TABLE |

A LIST OF COMMON GOALS AND THEIR RELATED SMOOTH C. Reference TraJeCtory Sate

PERFORMANCE CRITERIONS TO BE MAXIMIZED It is important to notice that agents have access to the
maximum location of posterior predictive entities (such as
. Goals ___| Smooth objective function prediction, variance, and entropy) overc R, using the
Avoidance (Negative prediction) 8o = —Z2(s, t]t) - . . .
Tracing (Prediction) B1 = 2(s, t]t) Gaussian process. Hence, instead of using local gradient
Exploration (Variance) B2 = o2(s, t|t) ascent strategy [10], [11] that converges to a local maximum
Exploration (Entropy) Bs = H(z(s, t|t)) we introduce a reference trajectory state, which will guide

agents to maximize the objective function in (24) directly
for the global maximum. For each of agents at each time
IV. NAVIGATION STRATEGIES instant, the maximum location of the corresponding posteri

Depending on the tasks for the sensing agents, the c@redictive entity will be evaluated and this value will belfe

lective mobility of sensing agents is designed to maximize @to a lowpass filter to generate a reference trajectore stat

specified performance criterion. In this section, we intm@l  Therefore, agents can directly locate the global maximum of

a set of different objective functions for navigation, theithe posterior predictive entity.

parameterization, and a way to maximize such an objective

function via a reference trajectory state. 7i(t) = argmax J; (A(t); s, ). (25)

A. Biologically Inspired Navigation The reference trajectory;(t) is generated by a lowpass

We propose a set of useful, biologically inspired navigagiiter with a time constanfr’, i.e. fed by n;(¢). The
tion modes (tracing, avoidance, and exploration) for aglentyjscretized version is given by:

(i) for tracing, agents move to the maximum location of the
estimated field: ri(t)
2

qi(t) = arg max 2(s,t)t), (20)

’T+1

1 1
=ri(t—1)+e —Tﬁ(t—l)+fﬁi(t) - (26)

Agent i then can perform a gradient ascent strategy with

(ii) for avoidance, we also have: respect to the following objective function:

i(t) = —3(s, t|t),
v = - J AW 1) 1= =350 0) (O
(iiy for exploration, the agents can move to a location R L o (27)
associated to the maximum variance VJ(A(t); qit) = —(qi(t) — r4(1)).
2
a(t) = argmaxo (s, 2[1), (22) V. COOPERATIVELY LEARNING CONTROL
or differential entropy of the Gaussian process: Each of mobile agents receives measurements from neigh-

1 ) bors, then updates its estimation of the Gaussian process in
qi(t) = argmax H(z(s, t|t)) = = In(2mec”(s,t|t)). (23) R via the recursive algorithm presented in (16), (17) and
SER 2
, ) an update in (19). Subsequently, based on the update of a
By using (22) and (23), we expect the variance and ﬂ?rament of a performance criterion in Table I, the control

entropy of the Gaussian process in the surveillance regigg, jis coordination will be decided. For agentthe update
R to decrease. Notice that prediction in (19) and gradienf§acomes:

in (20), (21), (22) and (23) are smooth functions of a logatio

s, which ensures the existence of extreme values over a Eyz( ) = i(t) + @i () Pi(t]t — 1)@ ()"
compact set. Kpi(t) = Paltlt = D)®:(0) 55,7 (1)

In Table I, a list of common goals and their related per- R
formance criterion functions for coordinating sensingrage 0:(t[t) = 0;(t|t — 1) + K y4(t) [Yi(t) — D;(t)0;(t|t — 1)}
are summarized.

B. The Par - ation of & Global Goal Pi(tft) = [I = Kpi(t)2s(O)Pi (] — 1),
e Parameterization of a Global Go Bu(t + 1[t) = Fy ()0 (t]t — 1)

The optimal balance between exploitation and explorat|0n N
is commonly observed in biological searchers [28], [29] as + Ei(OK 5 (0)]Yi(t) = @a()bs(t]t — 1],
well as in learning theory. The balance can be achieved W9;(t + 1[t) = F;(t) P;(t|t — 1) F (t) + Gi()Q:i(t)GT (t)
switching amongst or a convex combination of such goals « —1 T T
with different nature. For instance, a global goal can be — RO )2y, (K0 F (1), 28)

parameterized in the following way:
Zk A () B (5, 1) . whereY;(t) is the collection of collaboratively measured data
Ji(A(t);s,1) := L , foralli €7, (24) at iteration timef. Based on the gradient of the performance
Zk:l Aik(t) function V.J;(-;-,-) in (27) updated by (28), a distributed

where B (s,t) = 2(s,tt), Bia(s,t) = o(s,t|t) and control for agenti is decided by

i3(s,t) := H(z(s,t]t)) are specificall chosen for the later -
gir%(ulat)ion stu(dyf A |gl)czbal gogl is a fu};lction of a navigation ui(t) = =VU(qi(1)) = kaipi(t) + kaV Ji(A(1); 4i(t), )
strategyA(t) := [\ (1)] € R that sets the individual — + > ai;(a()(p; (t) — pi(t)),
weights on the all possible performance criterions (typica  jen(i,q(1)
ones are shown in Table I). (29)




. : I . 40 iterati b) 80 iterati
herek, € R, is a gain for the global objective function 4D TISTHTS 5 Ira 'ns

and k4; € Ry is a gain for the velocity feedback. The
first term in (29) is the gradient of (8) which attracts agent ;
while avoiding collisions among them. Also it restricts the
movements of agents insidB. The last term in (29) is
an effort for agenti to match its velocity with those of o
neighbors. This term is also called a “velocity consensus
and serves as a damping force among agents. Incorporat
the closed-loop discrete time model in (1) along with theS
proposed control in (29) and the reference trajectory sta
(27) gives

0

-5 5 -5 0 5
mode=[ 1 0 0 ]; Noise STD=1 mode=[ 1 0 0 ]; Noise STD=1

1 1
At +1) = ri(t ——ri(t) + =it + 1)1,
rilt 1) =rilt) e [ TT )+ T77 (t+ )] Fig. 1. Tracing: The plot o (s, t|t). The error field betweer (s, t[t)

and z(s, t|t) is plotted by colored contours.

it + 1) = (t) +clpi (1) 30
pi(t+ 1) =pi(t) + e[ — VU (g;i(t)) — kaipi(t) (a) 30 iterations (b) B0 iterations
= VOG(pi(1)) + ka(rilt) = ()] i
where the iteration step or the sampling timis sufficiently .

small so that the trajectories of states can be approximat
by the associated ODE (see more details in [30]). A velocit ©
saturation can be imposed in (30), which can be thought

a projection onto a space with a bounded velocity [30]. 5

VI. SIMULATION RESULTS

To demonstrate the proposed learning agents, we appli T 0o 5 5 E i
the control (29) to spatio-temporal Gaussian processes-int mode=[0 10 ]; Noise STD=1 mode=[ 0 10, Noise STD=1
duced in Section Il under various global goals generated lﬁg. 2. Variance driven exploration: The plot of(s, f|¢) updated by
(24)- agentl (blue-lowest, red-highest).

Hereafter plots contain updated posterior predictiveeslu
of agent 1 along with trajectories of all agents. Mode 1,
Mode 2, and Mode 3 denote the tracing in (20), exploratiop: A Switching Protocol
via variance in (22), exploration via entropy in (23) respec

tively. We propose a switching protocol between exploration
. (Mode 2 or Mode 3) and exploitation (Modd). Each agent
A. Tracing starts with an exploration strategy, when an agent obtains

Nine swarming learning agents performed a tracing strag maximum prediction error variance within a specified
egy as shown in Fig. 1. Hergt) in (25) is generated by the tolerance, it switches to the tracing strategy in order tate
location associated to the maximum of the predicted valu&e maximum of the predicted field within the variance error
%(s,t|t) over R. The maximum is obtained by evaluatingtolerance. Fig. 4 shows that the convergence rates of tpe tra
4(s,t|t) at a fine grid overR. The reference trajectory of P(t|t), the RMS value of the error field, and the maximum
generated by (26) is plotted by the smaller stars and a dottgalue n(¢) under the switching protocol. Agent switches
black line. The white star represents the latest refereore p from Mode1 to Mode2 when the maximum variance error
for agentl to track. Learning agents with the tracing modd>eécomes less tham0 as in Fig. 4. As shown in Fig. 5,
alone converge to a configuration for a local maximum.
Agents with the tracing strategy alone can not find the

. o ; 50 iterati by 100 iterati
maximum point if they are far from it. (8) 50 iterations (b) 100 iterations

B. Exploration '
Learning agents performed group exploration by trackin >

the maximal variance location as shown in Fig. 2. The plot

show o2(s,t|t) of agentl. Stars represents the referencep

state trajectory for agerit to follow. As depicted in Fig. 2,

the reference state can travel between alternating maximt

points, since the maximum point decreases as agents coll

samples near the maximum variance location. The wors

case error varianceaxcr o>(s, t[t) and the RMS value of 5

: ; . - 0 5 -5 5
a error field betweep(s, t|t) and/i(s, t[t) quickly converges  mode=[ 00 1; Noise STD=1 mode=[ 0 0 1] Noise STD=1
to a small number. In the same way, the entropy driven

exploration strategy is shown witH (z(s, t[t)) in Fig. 3. Fig. 3. Entropy driven exploration: The plot of entroj(z(s, t|t)).

0
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Fig. 4. A switching protocol: The convergence rates of thedrof P(t|t),
the RMS value of the error field, and maximum vahe) under a switching El

protocol. Agentl switched from Model to Mode 2 around iteration time [10]
47.

(a) 40 iterations (b) 80 iterations

(11]

[12]
(23]

[14]

[15]

-5 0 5
mode=[ 0 1 0 ], Noise STD=1

-5 0 5
mode=[ 1 0 0 ]; Noise STD=1

. o 16
Fig. 5. Plots for a switching protocol. Left: the plot of (s, t|t) under [16]

variance driven exploration. Right: the plot 6fs, ¢|¢t) under the tracing

mode. [17]

(18]

learning agents under this switching protocol succes;sfull[lgl
locate the global maximum point iR.
[20]
VII. CONCLUSIONS

In this paper, we presented a novel class of self-organizirﬂ%f]
multi-agent systems that form a swarm and learn a spatio-
temporal process through noisy measurements from neigh2]
bors for various global goals. The physical spatio-tempor 3]
process of interest is modeled by a spatio-temporal Gaussi
process. Each agent maintains its own posterior predictive
statistics of the Gaussian process based on online meast
ments from neighbors. The proposed learning agents perfopa;
a prescribed task by tracking the maximum location of an
objective function. A switching protocol was proposed for26]
achieving the global maximum of a spatio-temporal Gaussian
process. The usefulness of the proposed multi-agent system
with respect to various global goals was demonstrated 6@/7]
several numerical examples.
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