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Abstract— In this paper, we propose a cooperative localiza-
tion algorithm for mobile sensor networks with camera sensors
to operate under GPS denied areas or indoor environments.
Mobile robots are partitioned into two groups. One group
moves within the field of views of remaining stationary robots.
The moving robots are tracked by stationary robots and their
trajectories are used as spatio-temporal features. From these
spatio-temporal features, relative poses of robots are computed
using multi-view geometry. In order to provide the poses of
robots with respect to the reference coordinate system, robots
take a turn and at least one robot is stationed as robots move
across the field of interest. By taking the advantage of the
multi-agent system, we can reliably localize robots over time
as they perform a group task. In experiment, we demonstrate
that the proposed method consistently achieves less than 1cm
of localization error for trajectories of length less than 100cm
and less than 0.34% of localization error for longer trajectories
of length between 725cm and 769cm using an inexpensive off-
the-shelf robotic platform.

I. INTRODUCTION

A wireless sensor network has been successfully applied to
many applications for monitoring, event detection, and con-
trol of our environment, including environment monitoring,
building comfort control, traffic control, manufacturing and
plant automation, and military surveillance applications (see
[1] and references therein). However, faced with the uncer-
tain nature of the environment, stationary sensor networks
are sometimes inadequate and a mobile sensing technology
shows superior performance in terms of its adaptability and
high-resolution sampling capability [2].

A mobile sensor network can efficiently acquire infor-
mation by increasing sensing coverage both in space and
time, thereby resulting in robust sensing under the dynamic
and uncertain environments. While a mobile sensor networks
shares the same limitations of wireless sensor networks in
terms of its short communication range, limited memory,
and limited computational power, it can perform complex
tasks, e.g., exploration, surveillance, and environmental mon-
itoring, distributed coordination, by cooperating with other
agents as a group. There is a growing interest in mobile
sensor networks and it has received significant attention
recently [3]–[6].

In order to perform sensing or coordination using mobile
sensor networks, localization of all the nodes is of paramount
importance. A number of localization algorithms have been

This work has been supported in part by the Basic Science Research
Program through the National Research Foundation of Korea (NRF) funded
by the Ministry of Education, Science and Technology (No. 2010-0013354).

Junghun Suh and Songhwai Oh are with the School of Electrical Engi-
neering and Computer Science and ASRI, Seoul National University, Seoul
151-744, Korea (emails: {junghun.suh, songhwai.oh}@cpslab.snu.ac.kr).
Seungil You is with the Control and Dynamic Systems, California Institute
of Technology, Pasadena, CA 91125 USA (email: syou@caltech.edu).

proposed for stationary sensor networks, e.g., [7], [8]. But
they are applied in the outdoor environment and precise
indoor localization is still a challenging problem [9]. (For
more information about various localization methods for
wireless sensor networks, see references in [7]–[9].) One
promising approach to indoor localization is based on the
ultra-wideband (UWB) radio technology [10]. But as stated
in [10], the minimum achievable positioning error can be in
the order of 10cm’s and it is not accurate enough to control
and coordinate a group of robots. In addition, the method
requires highly accurate time synchronization.

Localization using camera sensors have been widely stud-
ied in the computer vision community. Taylor et al. [11]
used controllable light sources to localize sensor nodes
in a stationary camera network. A distributed version of
camera localization is proposed by Funiak et al. [12], in
which relative positions of cameras are recovered by tracking
a moving object. Meingast et al. [13] proposed a multi-
target tracking based camera network localization algorithm.
The critical concept applied in [13] is the use of spatio-
temporal features, an approach taken in this paper. These
spatio-temporal features were used for finding matching
features over a pair of cameras instead of spatial features.
Then the relative position and orientation between cameras
were computed using multi-view geometry. Since an incor-
rect matching between spatio-temporal features is extremely
rare compared to spatial features, the method provides an
outstanding performance under wide baseline and varying
lighting conditions.

But the aforementioned methods are designed for station-
ary camera networks and not optimal for dynamic mobile
sensor networks. In fact, in mobile sensor networks, we can
take the advantage of mobility to improve the efficiency
of localization. For instance, Zhang et al. [14] proposed
a method to control the formation of robots for better
localization. They estimated the quality of team localization
depending on the sensing graph and the shape of formation.
Tully et al. [15] used a ”leap-frog” method for a team of three
robots performing cooperative localization during navigation.
Two robots, which are stationary, localize the moving third
robot from bearing measurements with an extended Kalman
filter. After completing the move, the role of each robot is
switched and the process is repeated. They have shown a
good localization result while moving in a 20m×30m GPS-
denied area. However, the experiment was conducted using
an expensive hardware platform (three on-board computers
and four stereo cameras are used) and it is unclear if the
approach is suitable for an inexpensive off-the-shelf robotic
platform considered in this paper.

We propose a localization algorithm for mobile sensor



networks under GPS denied areas or indoor environments
using inexpensive off-the-shelf robotic platform. We take
the advantage of the multi-agent system of mobile sensor
networks. In order to localize mobile robots, we first partition
robots into two groups: stationary robots and moving robots.
We assume each robot carries a camera and two markers.
The moving robots move within the field of views (FOVs) of
stationary robots. The stationary robots observe the moving
robots and record the positions of the markers of moving
robots. Based on the trajectories of markers of moving robots
(i.e., spatio-temporal features), we localize all the robots
using multi-view geometry. Localization requires recovering
relative positions, i.e., translation and orientation. A multi-
robot coordination algorithm using the proposed localization
algorithm is also presented, which maintains positions of
robots with respect to a fixed reference coordinate system
as a group of robots moves across the field of interest.

We have implemented the proposed algorithm on a mo-
bile robot platform assembled from an iRobot Create [16]
and conducted an extensive set of experiments. From ex-
periments, we have discovered a set of configurations of
robots, from which good localization is possible. We then
applied these configurations in our cooperative multi-robot
localization algorithm. Our experimental results show that
the proposed method consistently achieves less than 1cm
of localization error for trajectories of length less than
100cm and less than 0.34% of localization error for longer
trajectories of length between 725cm and 769cm, making
it a promising solution for multi-robot localization in GPS
denied or unstructured environments.

This paper is structured as follows. Section II provides
an overview of the proposed cooperative multi-robot local-
ization method. In Section III, We present the multi-robot
localization algorithm based on planar homography used in
our experiments. Multi-robot coordination and communica-
tion protocols are described in Section IV. In Section V, the
results from experiments are presented.

II. AN OVERVIEW OF COOPERATIVE MULTI-ROBOT
LOCALIZATION

This section gives an overview of the method proposed
in this paper. Suppose there are N robots and we index
each robot from 1 to N. We assume that each robot’s
state is determined by its position and orientation in the
reference coordinate system. Then the goal of the multi-robot
localization problem is to estimate positions and orientations
of all robots over time.

Let Xi(k) = (Pi(k),Ri(k)) be the state of robot i at time
k with respect to the reference coordinate system, where
Pi(k) ∈ ℝ3 and Ri(k) ∈ SO(3) are the position and rotation
of robot i at time k, respectively. Then the configuration of
a multi-robot system at time k is

X(k) = (X1(k),X2(k), . . . ,XN(k)).

The multi-robot localization problem is to estimate X(k) for
all k from sensor data.

Suppose that we have X(k− 1) with respect to the ref-
erence coordinate system and computed relative positions,

Fig. 1. An overview of the proposed cooperative multi-robot localization
algorithm. A group of robots is is moving within the field of views of
stationary robots. Stationary robots track markers of moving robots and
exchange marker positions with other stationary robots. The translations
and orientations of pairs of stationary robots are then computed using multi-
view geometry. Finally, all robots are localized with respect to the reference
coordinate system based on the position of at least one fixed robot since
last update time.

Ti j(k), and orientations, Ri j(k), for pairs of robots i and
j at time k. Then we can easily compute positions and
orientations of all robots with respect to a single robot of
choice. In order to map new positions of robots in the
reference coordinate system, we require that there is at least
one robot i such that Xi(k) = Xi(k−1). Then taking positions
with respect to this robot, we can recover the positions
and orientations of all robots at time k with respect to the
reference coordinate system.

Based on this idea, we develop a corporative localization
algorithm. At each time instance, we fix robot q and move
other robots. Then we compute Ti j(k) and Ri j(k) for pairs
of robots such that the pose of each robot can be computed
with respect to robot q. Finally, we compute X(k) based
on Xq(k− 1). For k + 1, we fix another robot r and move
remaining robots and continue this process. By doing so, we
can continuously estimate X(k) for all times.

Now the remaining issue is how to estimate translations
Ti j(k) and orientations Ri j(k) for pairs of robots. For this
task, we make the following assumptions:
∙ Each robot carries a camera and markers.
∙ The internal parameters of cameras are known (e.g.,

focal lengths, principal points, distortion coefficients).
∙ Each robot communicates with other robots via wireless

communication.
∙ The clocks of all robots are synchronized.
∙ Either the distance between a pair of markers on a robot

is known or the height of a single marker is known when
a robot is moving on a flat surface.

∙ At least two robots which capture images are stationary.
Figure 1 illustrates an overview of our method. Robots

carrying markers move within the field of views (FOVs) of
stationary robots. Each stationary robot performs image pro-
cessing, detects markers, and localizes positions of markers
in its image frame. The marker positions and image capture
times are shared with other stationary robots. For a pair
of stationary robots i and j, we can compute the relative
translation Ti j(k) and orientation Ri j(k) from pairs of marker
trajectories using multi-view geometry.

Since the minimum number of robots required for the
proposed cooperative localization algorithm is three, we will



discuss our method using a mobile sensor network of three
robots for the ease of exposition in this paper. However,
the proposed method can be applied to a multi-robot system
with a larger number of robots. Furthermore, while a single
moving robot is used in our discussion and experiment, the
method can be likewise applied to the case with multiple
moving robots using a multi-target tracking algorithm as
done in [13].

III. MULTI-ROBOT LOCALIZATION USING MULTI-VIEW
GEOMETRY

In this section, we focus on a single step of the cooperative
multi-robot localization algorithm for localizing stationary
robots by tracking a moving robot.

When two cameras view the same 3D scene from different
viewpoints, we can construct the geometric relation between
two views. If we constrain the 3D scene to the planar scene,
the relation can be represented using the homography. The
homography can be computed from a number of pairs of
corresponding points which are the positions of the marker
on the robot and they are detected by a color based marker
detection algorithm.

In order to robustly estimate the planar homography, we
use the random sampling consensus (RANSAC) algorithm
[17], which is robust for fitting a model in the presence
of outliers. The homography between two views can be
expressed as follows:

H = K
(

R+
1
d

T NT
)

K−1 (1)

where, R ∈ SO(3) is the rotation matrix, T ∈ ℝ3 is the
translation vector, N is the unit normal vector of the plane
with respect to the first camera frame and d is the distance
from the plane to the optical center of the first camera [18].

We can recover
{

R, 1
d T,N

}
from H using singular value

decomposition. From this derivation, we obtain two possible
solutions [18]. Among two solutions, we can find a unique
solution since the normal vector of the plane is available
in our case. In this paper, corresponding points are located
in the plane which is parallel to the ground and the angle
each camera views the ground is fixed, so we can compute
the normal vector of the plane. As explained in [18], from
singular value decomposition of HT H, we obtain orthogonal
matrix V ∈ SO(3), such that HT H = V ∑V T , where V =
[v1,v2,v3]. Let u be the unit-length vector such that N =
v2×u and vT

2 u = 0 because v2 is orthogonal to N. Therefore,
given v2 and N, we can solve for u. Once we find u, we can
form the new orthonormal basis {v2,u,N} and obtain R and
T as follows:

R =WUT and T = d(H−R)N, (2)

where U = [v2,u,N] and W = [Hv2,Hu, Ĥv2Hu].
When we reconstruct the position of markers in the 3D

space using data points from the image plane, we can find
the exact scale factor using the distance between markers.
In order to compute the distance d from camera center to
the 2D plane in the 3D space, we can simply measure the

height of marker and camera. Considering that the 2D plane
of markers is parallel with the plane where the center of
camera is located, d is the distance between these two planes.

IV. MULTI-ROBOT COORDINATION AND
COMMUNICATION

The overall cooperative localization algorithm is illustrated
in Figure 2. A moving robot (robot C) is not illustrated in
this figure. Let the coordinate of robot A in Figure 2 (Step
1) be the reference coordinate. In Step 1, from our proposed
localization process, the homography H01 and the position
of robot B are obtained with respect to the coordinate of
robot A. After localization, robot B is stationary and robot A
moves forward and rotates to the left. (For more information
about movements after localization, see V-B.) Before starting
localization, robot A and B check whether robot C is within
the FOVs and make it move within the FOVs. Again the
homography H12, the relative pose of robot A with respect
to the coordinate of robot B, is computed (Step 2). Now we
compute the position of robot A with respect to the reference
coordinate by using the composition of two homography H01
and H12, i.e., H02 = H01H12. In Step 3, robot A is stationary
and robot B moves forward and rotates. And the process
repeats as robot A, B, and C moves as a group. Note that
this three-robot coordination method can be easily extended
to a multi-robot system with a larger number of robots.

An overview of the communication scheme for a three-
robot system is as follows. We use a one-server, two-
client model. After synchronization, robot A (server) sends
a command to robot B (client 1) to capture images while
commanding robot C (client 2) to move. Then robot A and
B capture images and robot C moves. Since robot C may
move beyond the FOV of robot A or robot B, robots A and
B check the visibility of robot C, testing whether robot C is
within the FOVs. If robot C is not visible by either robot,
visibility information is sent to robot C and robot C turns
back to be visible by both robots. Once an enough number
of marker positions are collected, robot B sends trajectory
data and capture times to robot A. Then, robot A estimates
homography matrix H using its data and data transmitted by
robot B.

V. EXPERIMENTAL RESULTS

In this section, we discuss the results obtained from our
indoor experiments. For our experiments, we used a wheeled
mobile robot, iRobot Create [16], as a mobile node in our
mobile sensor network. Our mobile platform is shown in
Figure 3(a). It is equipped with a PS3 Eye camera, HP
Netbook Mini 110 which runs Linux OS, and a white LED
which works as a marker. Wi-Fi (IEEE 802.11) is used
for robot communication. Each camera has a resolution of
320×240 pixels and runs at 100 frames per second (fps).

In order to reduce the computation time, when we detect
a marker in an image, we restricted our search over a
small patch centered at the position based on the previously
detected marker’s position and marker’s velocity. Suppose
that the pixel position of the marker at time k is (xk,yk). At
time k+1, the center of the patch is at (xk +(xk−xk−1),yk +



Fig. 2. An illustration of the cooperative multi-robot localization algorithm. The length of each red segment is the distance from the original position of
robot A in step 1 to the new position of the robot with motion. Dashed lines show the relative poses that are computed at each step of the algorithm. l is
the distance between two stationary robots and θ is the angle between them.

Fig. 3. (a) iRobot Create based mobile platform. (b) A photo from the
experiment. The Vicon motion capture system is used for providing the
ground truth values. (c) An image obtained from Vicon with robots placed
on the reference coordinate system.

(yk − yk−1)). In our experiment, we used a 40×40 patch,
which is decided based on the speed of robots used in the
experiment.

The time synchronization operation is implemented as
follows. Clients wait for a synchronization signal from the
server. After receiving a synchronization signal, clients start
their respective tasks at the chosen synchronization time. The
server robot and client 1 robot capture images at 100 fps and
record image capture times.

There are three types of errors that can be introduced. The
first type is the environmental error. The planar homography
assumes that all correspondences are on the same plane.
However, a bumpy movement of a moving robot and debris
on the floor can introduce an error. By using RANSAC,
we can exclude outliers and reduce this type of error.
The second type is the correspondence error. An incorrect
correspondence of markers from two images can introduce an
estimation error. By comparing timestamps from two image
buffers, we find corresponding image pairs when the time
difference is less than a threshold. In our experiment, the
time synchronization error was at most 5ms. In addition, the
center of detected blob may not be the correct position of a

marker. The third type is the quantization error from using
images with the finite resolution. In experiment, we have
found that this error is not fatal for the results and can be
reduced by using more marker positions.

A. Cooperative Multi-Robot Localization: Single-Step

We first performed experiments for the single-step of
the cooperative multi-robot localization algorithm in order
to find a multi-robot configuration which results in good
localization.

Figure 3(b)-(c) shows our experiment setup. We used the
Vicon motion capture system [19] to collect the ground
truth data in order to measure the performance of our
algorithm. The Vicon motion capture system operates at
over 250Hz and its position error is less than 0.25mm.
We conducted our experiments at four different baselines
between two stationary robots (l = 60,80,100,120cm). For
each baseline, we tested five different angles between robots
(θ = 0 ∘,10 ∘,20 ∘,30 ∘,40 ∘). See Figure 2 for how l and θ

are defined. Hence, there is a total of 20 cases. For each
case, we collected about 250 marker positions of a moving
robot. We randomly picked 50 data points and performed
our algorithm and repeated this process for 500 times for
each case. Hence, for each case, we have 500 runs. For each
run, we computed the estimation error εi = ∣l̂i− lvicon∣, for
i = 1,2, . . . ,500, where l̂i is the estimated distance between
two robots for the i-th run using our algorithm and lvicon is
the ground truth distance obtained from Vicon. Figure 4(a)-
4(d) show the results of all 20 cases. The distribution of
localization error is shown as a histogram for each case.
The bin size of a histogram is 0.5cm and the color of a
bin represents the number of runs with localization errors
belonging to the bin. When this number is large, the bin
color is red and the bin color is dark blue when this number
is low. For instance, when l = 60 and θ = 0, more than 200
runs resulted in error between 0.5cm and 1.0cm. A white
circle represents the mean error from 500 runs for each case.
For l = 60 and θ = 0, the mean error is 0.5cm. As shown in
Figure 4(a) and 4(b), when the baseline is 60cm or 80cm, the
mean error is within 1cm, except when (l = 80,θ = 0) and
(l = 80,θ = 10). On the other hand, as shown in Figure 4(c)
and 4(d), the mean errors are relatively high for l = 100cm
and l = 120cm, especially at small angles. This is due to the



TABLE I
RESULTS FROM THE MULTI-STEP EXPERIMENT. (SEE FIGURE 2 FOR

SEGMENT LABELS)

seg true est seg true est
a-b 77.14cm 77.12cm a-b 77.14cm 77.12cm
b-c 85.76cm 85.72cm a-c 36.22cm 36.23cm
c-d 78.29cm 78.42cm a-d 85.73cm 85.21cm
d-e 88.16cm 87.82cm a-e 74.01cm 73.98cm
e-f 80.47cm 80.05cm a-f 107.82cm 107.4cm
f-g 89.82cm 89.53cm a-g 109.73cm 109.36cm

fact that the overlapping area between two cameras is small
for those cases. We plotted the localization error as a function
of the number of overlapping pixels in Figure 5. Clearly,
the size of the overlapping area determines the localization
performance and we must account this when designing a
multi-robot localization algorithm. Since the baseline dis-
tance and angle between robots can be configured in our
multi-robot localization algorithm for the best performance,
the experimental results show how we should configure
robots in our cooperative multi-robot localization algorithm
as we do in the next experiment.

B. Cooperative Multi-Robot Localization: Multi-Step

In this experiment, we localize a group of robots as they
move from one place to another as described in Section IV.
Based on the previous experiment, we found that a baseline
of 80cm and an angle between 30 ∘ and 40∘ were ideal and
this configuration was used in this multi-step experiment.

Because the space covered by the Vicon motion capture
system was limited, we were able to perform six steps of the
algorithm as shown in Figure 2. Table I shows localization
errors from the experiments. In the table, “seg” represents
the line segment shown in Figure 2, “true” is the length
of the segment computed by Vicon, and “est” is the length
computed by our algorithm. At step 1, the difference between
ground truth value and estimation value is 0.02cm. After step
1, robot A goes forward for about 40cm and turns to the left
and robot B does not move. Since we know the angle between
robot A and B from rotation matrix R computed in step 1,
when robot A rotates, we can maintain the pre-defined angle
θ . At step 2, the coordinate system with respect to robot B
is the reference coordinate system and the localization error
for the segment a−c is only 0.01cm. After step 2, robot A is
stationed and robot B moves forward for about 40cm. Again,
we can maintain the pre-defined distance d by computing the
position of robot B in step 2 with respect to the coordinate of
robot A in step 1. And this process is repeated as shown in
Figure 2. For all steps, the localization error was kept within
1cm and the localization error of the longest segment a−g
was only 0.37cm.

We also conducted the experiments in the hallway to
demonstrate its performance over a long distance (see Fig-
ure 6(a) and 6(b)). Table II shows localization results from
the experiments in the hallway. For trajectories with length
from 725cm to 769cm, the achieved localization error is

(a) Baseline l = 60cm

(b) Baseline l = 80cm

(c) Baseline l = 100cm

(d) Baseline l = 120cm

Fig. 4. Localization error distributions of 20 cases at different baselines (l =
60,80,100,120cm) and angles (θ = 0∘,10∘,20∘,30∘,40∘) between robots.
Each case has 500 runs. An interval of each bin is 0.5cm and the color of
each bin represents the number of runs with localization error belonging to
the interval. A white circle represents the mean error of 500 runs.



Fig. 5. Scatter plot of the localization error as a function of the number
of overlapping pixels between two cameras.

TABLE II
RESULTS FROM THE MULTI-STEP EXPERIMENT IN THE HALLWAY.

Case Robot True Est. Error Err. Rate

1 B 769cm 771.6cm 2.6cm 0.34%
A 730cm 728.1cm 1.9cm 0.26%

2 B 725cm 723.2cm 1.8cm 0.25%
A 732cm 733.5cm 1.5cm 0.20%

(a) (b)

(c)

Fig. 6. (a) and (b) Photos from the hallway experiments. (c) Estimated
trajectories of robots (robot A and B).

between 1.5cm and 2.6cm, making the error less than 0.34%
of the length of the trajectory of the robot. See Figure 6 for
photos from the experiments and robot labels.

Localization under the GPS denied or unstructured indoor
environment is a challenging problem. But the experimental
results show that our algorithm can provide a promising
solution to this challenging localization problem.

VI. CONCLUSION

In this paper, we have presented a cooperative localization
algorithm for mobile sensor networks. The algorithm is
designed to solve the challenging localization problem under
the GPS denied or unstructured indoor environment by taking
the advantage of the multi-agent system and mobility in

mobile sensor networks. Our experiment shows that there
exists a configuration of robots for good localization and
this configuration is applied to develop a highly accurate co-
operative multi-robot localization algorithm. In experiments,
the proposed method achieves less than 1cm of localization
error for trajectories of length less than 100cm and less
than 0.34% of localization error for trajectories of length
between 725cm and 769cm. The experimental results show
that the localization error increases as a robot travels a longer
distance. This propagation of error can be reduced by placing
landmarks in the environment and this is our future research
topic.
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