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Abstract

In this paper, we propose a novel approach for video
stabilization using Markov random field (MRF) model-
ing and maximum a posteriori (MAP) optimization. We
build an MRF model describing a sequence of unsta-
ble images and find joint pixel matchings over all im-
age sequences with MAP optimization via Gibbs sam-
pling. The resulting displacements of matched pixels in
consecutive frames indicate the camera motion between
frames and can be used to remove the camera motion to
stabilize image sequences. The proposed method shows
robust performance even when a scene has moving fore-
ground objects and brings more accurate stabilization
results. The performance of our algorithm is evaluated
on outdoor scenes.

1. Introduction
In real world visual surveillance, there exists many

factors, e.g., wind, rain, and vibration, which cause poor
quality in video sequences. In addition, with a hand-
held camera or a camera mounted on the mobile plat-
form, it is not easy to construct stable video sequences.
These cases cause shaky video sequences and, in worst
case, it is impossible to figure out objects clearly in the
image, e.g., object shapes can be blurred. Video stabi-
lization is an video enhancement method which can be
applied in these situations to enhance corrupted video
sequences for high level analyses, such as object detec-
tion and recognition.

Video stabilization has been researched thoroughly
and a number of approaches have been proposed. One
of the proposed methods is applying tracking methods
in stabilization. In [1] and [2], authors used particle
filters to track the movement of pixels between two
frames and estimated the global camera motion. In [3],
Battiato used scale invariant feature transform (SIFT)
features for tracking-based video stabilization. In his
work, he adopted a feature-based motion estimation al-
gorithm. Another SIFT-based approach was proposed

by Shen [4], and, in his work, he reduced the dimen-
sion of extracted features by principal component anal-
ysis. Moreover, transform property-based algorithms
were also used to estimate camera motion for stabiliza-
tion. Hong applied block matching on polar transform
[5] and Yan adopted Hilbert Huang Transform to sta-
bilize video sequences [6]. Another way to solve the
stabilization problem is local patch finding. Ko et. al
suggested a local patch finding method by sliding win-
dows on gray coded bit planes [7]. Lastly, an edge map-
ping algorithm for motion estimation was proposed by
Liu [8].

However, these stabilization algorithms only con-
sider two consecutive frames at a time. Hence, they can-
not be applied reliably when a scene has independently
moving foreground objects and stabilization accuracy
can be low in general. This paper presents a method for
solving those remaining problems by formulating the
video stabilization problem as MRF-MAP energy min-
imization over a sequence of frames jointly.

The rest of this paper is organized as follows. In
Section 2, the joint video stabilization problem is for-
mulated and experimental results and conclusions are
given in Section 3 and 4, respectively.

2. MRF-MAP Joint Video Stabilization
Before explaining the main approaches, we make

three assumptions; 1) a camera does not move too much
between two frames, 2) a camera does not move too
much in one direction, 3) the scene has a large num-
ber pixels occupying background than foreground. The
first assumption is necessary to prevent an excessively
blurred image, in which image features, such as pixel
values, edges, and texture, are not reliable for high level
analyses. The second assumption is applied to distin-
guish a moving video sequence from a shaking video
sequence. In a moving camera video sequence, a cam-
era moves in one direction, while shaking camera moves
left to right and up and down repeatedly maintaining
the center in the long run. The third assumption is to
guarantee reliable stabilization results. If there are too
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many foreground pixels in the scene when a camera is
shaking, it is impossible to estimate the camera motion
because every foreground pixels in the scene could have
their own movements which are not related to the cam-
era motion.

The proposed algorithm targets for the whole video
sequence and is composed of four steps. First, it mod-
els image sequences by a Markov random field. Then,
MAP optimization is performed to find matching pixels
over several frames under the MRF framework. Next,
a simple clustering method is used to find the largest
cluster of pixel shifts in consecutive frames to calculate
the global shift between frames while eliminating out-
liers. Finally, a stabilized video sequence is recovered
by applying global shifts back to image sequences. Each
process is explained below.

2.1 MRF Formulation

A video sequence is modeled by a Markov random
field which is a graph with nodes and indirected edges
connecting nodes. By spanning several images of video
to an MRF model, every pixel is represented by a node
in a graph and connected to a group of pixels in the next
frame. From the first assumption, edges between pix-
els in a pre-defined neighbor window exist but there are
no connecting edges between distant pixels. Each edge
contains a probability which represents the likelihood
between a pair of pixels. One-to-one matching of pixels
is preferred and enforced by using a prior term in the
MAP formulation. This setting is described in detail in
the next section. By modeling video inputs as described
above, the MRF model for a given video sequence can
be built as Figure 1. Foreground pixels are also modeled
using this model, but, by the third assumption, they are
minority and can be removed as outliers.

With this MRF model, the video stabilization prob-
lem can be reduced to the problem of finding matching
pixels over a sequence of frames. Finding the best set
of matchings and analyzing these matchings in MRF to
describe the camera motion is the main goal of this pa-

Figure 1. The proposed MRF model:pixel
matching;Edges are possible matchings
between pixels over consecutive frames
and red lines are the matched pairs.

per. As explained before, a bipartite matching scheme
is enforced as priors of MRF to guarantee that two paths
are less likely jointed at a single node.

Due to the camera motion, some pixels may have dis-
appeared or a new set of pixels may appear and these
pixels cannot be matched to pixels in the previous or
next frame. To model those nodes with MRF, null-
nodes are added to the graph. In the proposed model,
every node is connected to a group of nodes in the next
frame and, at the same time, to this null-node with cer-
tain probabilities. If connecting to a null-node brings
better MAP estimate, the node is connected to the null-
node, rather than being connected to a node in the next
frame. Many pixels in one frame can be connected to
this null-node at the same time; it does not follow the
prior constraint.

2.2 MAP Optimization

To stabilize a video sequence, it is necessary to find
which pixel at time t is matched to which pixel at time
t+1 for all t. The proposed algorithm finds pixel match-
ings based on intensity values in all frames by applying
MAP optimization. The probability model of the MRF
formulation is shown in (1) below.

P (dX|X) ∝ P (X|dX)P (dX), (1)

where X is a pixel position, and dX is a pixel shift. Here,
the likelihood function P (X|dX) can be expressed as

P (X|dX) = Πt,iP (xt
i|dxt

i) (2)

with the assumption of independence condition accord-
ing to time. P (xt

i|dxt
i) is calculated among the set

N(xt
i), which is neighborhood of xt

i in Figure 2. This
formulation comes from the first assumption of problem
that the camera does not move too much over one frame.
The likelihood at time t is defined as

P (xt
i|dxt

i) ={
Z−1e−(I(R(xt

i))−I(xt
i))

2
if R(xt

i) ∈ N(xt
i)

0 otherwise
(3)

where I(xt
i) is the intensity value of xt

i, R(xt
i) is a

matched pixel of xt
i at time t+ 1 and Z is a normalizing

term. This likelihood function is adopted to represent

Figure 2. N(xt
i) used in likelihood
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that the pixel with similar intensity in the neighborhood
region at time t+ 1 is a reliable match to a pixel at time
t. The likelihood of an edge connected to a null-node
is pre-defined because a null-node does not have an in-
tensity value. In experiments, it is defined as 0.01 if
the maximum of calculated likelihood values in N(xt

i)
is large enough (i.e., if it is likely to be connected to
a node in the next frame). Otherwise, it is defined as
0.7 (e.g., it is more likely to be disappeared in the next
frame and should be connected to null-node with higher
probability).

The prior is,

P (dX) = ΠtP (dxt) = ΠtΠi,j,i 6=je
−h(R(xi)

t),R(xj)
t))

(4)
where h(y1, y2) is

h(y1, y2) =
{
β if y1 = y2
1 otherwise (5)

with β, which is greater than one. This prior makes dif-
ficult for two different pixels in the previous frame being
matched to a single pixel; the probability will decrease
if both of them are assigned to the same pixel.

After defining likelihoods and priors as above, a
Gibbs sampling method is applied to solve the MAP
problem. In the Gibbs sampling procedure, a config-
uration of pixel matchings is determined by an itera-
tive algorithm. With posterior probability, the node
keeps changing its connecting position in each itera-
tions. With large enough iterations, the MAP solution
computed by Gibbs sampling converges to a global so-
lution. This MRF-MAP solution considers all frames
jointly, and brings more exact stabilization results.

2.3 Global Shift Calculation
After every pixel movements for all t is known (i.e.,

when matchings for all nodes are known), the global im-
age shift between t and t + 1 is calculated. We collect
displacements of pixels in the same frame, and use them
to compute the global image shift at time t. However,
mean value of pixel shifts between two frames is erro-
neous because some shifts data can be outliers. This
can happen when a group of pixels is part of moving
objects, which is independent from the camera motion.
For this reason, pixels in foreground should be omit-
ted in calculating the global camera shift. Also, pixels
connected to null nodes can be outliers. To remove out-
liers, the proposed algorithm finds the highest density
area of data or the largest cluster. The mean shift algo-
rithm with several iterations or K-nearest neighborhood
algorithm can be adopted for this purpose. As a result,
only pixels inside this high density area are considered
in computing global shifts.

2.4 Video Reconstruction
The global transitional shifts of frames at all times

are calculated by the previous processes. Because the
calculated global shift value at time t indicates how
many pixels the image moved or how much a camera
moved, reversing pixel shifts can make the video se-
quences stable. However, some area cannot be recov-
ered when an image is shifted (since there is no informa-
tion about the shifted area.) The problem of this blank
region can be solved by remembering the past scenes
and doing image registration as shifting images. For
simplicity, it is omitted in this paper.

3 Experimental Results
We tested the proposed algorithm with actual out-

door sequences. They were captured by a hand-held
camera and a pole mounted camera which moves un-
steadily by winds. There exists foregrounds motions of
automobiles in the latter case.

Figure 3. Results: (a) Original video, (b)-
(c) Results by [2] and [3], (d) Result by the
proposed method.

The resolution of the first test video was 176 by 232
pixels and the results of the proposed algorithm and
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other methods are shown in Figure 3. This video is cap-
turing a back of car while camera is hardly shaking. As
shown in the Figure 3, the proposed method works bet-
ter than the other methods. The wiper blades on the
back of car looks shaking in the original sequences,
while it remains at the same position in the stabilized
sequences of the proposed method. The results of other
methods looks stable, but are worse than the proposed
method. The pixel transitions from ground truths after
stabilization algorithms are shown in the Figure 5(a).
Original lines describes how the input frames are shak-
ing, and the other lines show the shaking pixel transition
distances after [2], [3] and the proposed stabilization al-
gorithms are applied.

The second test video is a surveillance sequence with
120 by 160 pixels and the results are shown in the Fig-
ure 4. A camera is mounted on a pole and is shaking
and there are several moving foreground objects. In this
case, the existence of moving foreground objects lowers
the performances of the other algorithms, but the pro-
posed method still works well. The stable position of
the yellow sign (where two lines cross) in (d) shows the
robust stabilization effect of the proposed method. The
pixel transitions from ground truths after stabilization
algorithms are illustrated in the Figure 5(b).

Figure 4. Results: (a) Original image, (b)-
(c) Results by [2] and [3], (d) Result by the
proposed method, and the position (x,y)
of the yellow sign below each image.

Figure 5. Pixel movements:Original,[2],[3]
and the proposed method

4. Conclusion
The proposed method is a novel approach for video

stabilization. The pixel matching problem based on the
MRF model describing video sequences is solved with
MAP optimization. The displacements of matched pix-
els imply shaking camera motion and can be used to
eliminate the jitter in camera motion for building stabi-
lized video sequences. Experimental results show ro-
bustness and reliability of the proposed algorithm com-
pared to the existing approaches. We plan to improve
the performance by developing more sophisticated prior
and likelihood models.
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