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Abstract— This paper presents the Bayesian formulation of
data association and reviews an approximation algorithm called
Markov chain Monte Carlo data association (MCMCDA) for
solving data association problems arising in multi-target track-
ing in a cluttered environment. When the number of targets
is fixed, the single-scan version of MCMCDA approximates
joint probabilistic data association (JPDA). While the exact
computation of association probabilities in JPDA is NP-hard,
single-scan MCMCDA algorithm provides a fully polynomial
randomized approximation scheme for JPDA. For general multi-
target tracking problems, in which unknown numbers of targets
appear and disappear at random times, a multi-scan MCMCDA
algorithm approximates the optimal Bayesian filter and outper-
forms multiple hypothesis tracking (MHT).

I. INTRODUCTION

Multi-target tracking is a general mathematical formulation
of dynamical data association problems [1]. This paper pro-
vides the Bayesian formulation of multi-target tracking and
reviews recently developed Markov chain Monte Carlo data
association (MCMCDA) for solving data association problems
arising in multi-target tracking in a cluttered environment [2]–
[4].

The essence of the multi-target tracking problem is to
find tracks from the noisy measurements. If the sequence of
measurements associated with each target is known, multi-
target tracking (at least under the assumption of independent
motion) reduces to a set of state estimation problems, which,
for the purposes of this paper, we assume to be straightforward.
Unfortunately, the association between measurements and tar-
gets is unknown. The data association problem is to work out
which measurements were generated by which targets; more
precisely, we require a partition of measurements such that
each element of a partition is a collection of measurements
generated by a single target or clutter [5]. In many practical
cases, uncertainty as to the correct association is unavoidable.

There are two well-known algorithms for solving the multi-
target tracking problems and they are joint probabilistic
data association (JPDA) [1] and multiple hypothesis tracking
(MHT) [6]. The data association problem is known to be NP-
hard [7] and we do not expect to find efficient, exact algo-
rithms. Unlike MHT and JPDA, MCMCDA is a true approx-
imation scheme for the optimal Bayesian filter; i.e., when run
with unlimited resources, it converges to the Bayesian solution.

As the name suggests, MCMCDA uses Markov chain Monte
Carlo (MCMC) sampling instead of enumerating over all
possible associations. Single-scan MCMCDA is a fully poly-
nomial randomized approximation scheme for JPDA while
multi-scan MCMCDA outperforms MHT [4]. MCMCDA has
been successfully applied to wireless sensor networks [8],
distributed identity management [9], and computer vision [10],
to name a few.

The remainder of this paper is structured as follows. The
Bayesian formulation of data association for multi-target track-
ing is described in Section II. In Section III, the Markov chain
Monte Carlo (MCMC) method is summarized. The single-
scan MCMCDA algorithm is presented in Section IV. The
multi-scan MCMCDA algorithm is described in Section V. In
Section V, we give simulation results and a demonstration of
multi-target tracking using wireless sensor networks.

II. BAYESIAN FORMULATION OF DATA ASSOCIATION

A. Problem Formulation

Let T ∈ Z+ be the duration of surveillance. Let K be the
(unknown) number of objects that appear in the surveillance
region R during the surveillance period. Each object k moves
in R for some unknown duration [tki , t

k
f ] ⊆ [1, T ]. Each object

arises at a random position in R at tki , moves independently
around R until tkf and disappears. At each time, an existing
target persists with probability 1 − pz and disappears with
probability pz. The number of objects arising at each time over
R has a Poisson distribution with a parameter λbV where λb
is the birth rate of new objects per unit time, per unit volume,
and V is the volume of R. The initial position of a new object
is uniformly distributed over R.

Let F k : Rnx → Rnx be the discrete-time dynamics of the
object k, where nx is the dimension of the state variable, and
let xkt ∈ Rnx be the state of the object k at time t. The object
k moves according to

xkt+1 = F k(xkt ) + wkt , for t = tki , . . . , t
k
f − 1, (1)

where wkt ∈ Rnx are white noise processes.
The noisy observation (or measurement) of the state of

the object is measured with a detection probability pd. With
probability 1 − pd, the object is not detected and we call
this a missing observation. There are also false alarms and



the number of false alarms has a Poisson distribution with
a parameter λfV where λf is the false alarm rate per unit
time, per unit volume. Let nt be the number of observations
at time t, including both noisy observations and false alarms.
Let yjt ∈ Rny be the jth observation at time t for j = 1, . . . , nt,
where ny is the dimension of each observation vector. Each
object generates an observation at each sampling time if it is
detected. Let Hj : Rnx → Rny be the observation model.
Then the observations are generated as follows:

yjt =
{
Hj(xkt ) + vjt if the jth observation is from xkt
ut otherwise,

(2)
where vjt ∈ Rny are white noise processes and ut ∼ Unif(R)
is a random process for false alarms.

The multi-target tracking problem is to estimate K, {tki , tkf }
and {xkt : tki ≤ t ≤ tkf }, for k = 1, . . . ,K, from observations.

B. Probability Model

In order to define the prior model for data association
independently from measurements, we first define {ω} for
all possible measurement sizes. Let µ be a nonnegative T -
dimensional vector, i.e., µ = [µ1, . . . , µT ]T, representing the
possible numbers of measurements from t = 1 to t = T ,
where µt ∈ Z+ ∪ {0}. For each value of µ, define a set
of measurement indices Υµ

t = {(t, 1), (t, 2), . . . , (t, µt)} for
µt > 0, where (t, i) is an index to the ith measurement at time
t, and Υµ

t = ∅ for µt = 0. Now let Υµ = ∪Tt=1Υµ
t be an

index set to a set of measurements whose size matches µ and
let the set {Υµ : µ ∈ ZT } contain all possible index sets.

For each µ, let Ωµ be a collection of partitions of Υµ

such that, for ω ∈ Ωµ, ω = {τ0, τ1, . . . , τK}, where τ0 is
a set of indices to false alarms and τk is a set of indices to
measurements from target k, for k = 1, . . . ,K. More formally,
ω ∈ Ωµ is defined as follows:

1) ω = {τ0, τ1, . . . , τK};
2)
⋃K
k=0 τk = Υµ and τi ∩ τj = ∅ for i 6= j;

3) τ0 is a set of indices to false alarms; and
4) |τk ∩Υµ

t | ≤ 1 for k = 1, . . . ,K and t = 1, . . . , T .
Here, K = K(ω) is the number of tracks for the given
partition ω ∈ Ωµ and |S| denotes the cardinality of the set
S. We call τk a track when there is no confusion, although
the actual track is a sequence of state estimates computed
from the observations indexed by τk. (We assume there is
a deterministic function that returns a sequence of estimated
states given a set of observations, so no distinction is required.)
The fourth requirement says that a track can have at most
one observation at each time, but, in the case of multiple
sensors with overlapping sensing regions, we can easily relax
this requirement to allow multiple observations per track. For
special cases in which pd = 1 or λf = 0, the definition of Ωµ

can be adjusted accordingly.
Now let Ω̃ = {ω ∈ Ωµ : µ ∈ ZT }. Notice that µ = µ(ω) is

a deterministic function of ω ∈ Ω̃. In addition, we can compute
the following numbers from ω ∈ Ω̃:
• et, the number of targets present at time t with e0 = 0;

• zt, the number of targets terminated at time t with z1 = 0;
• at, the number of new targets at time t;
• dt, the number of detected targets at time t; and
• ft, the number of false alarms at time t, ft = µt − dt.

Since these numbers are deterministic functions of ω ∈
Ω̃, we have P (ω) = P (ω,N ) = P (ω|N )P (N ), where
N = {µt, et, zt, at, dt : 1 ≤ t ≤ T}. Based on the target
termination, target detection, new target arrival, and false alarm
models described in Section II-A, we can show that

P (N ) =
T∏
t=1

[(
et−1

zt

)
pzt

z (1− pz)et−1−zt (3)

×
(
et−1 − zt + at

dt

)
pdt

d (1− pd)et−1−zt+at−dt

× (λbV )at

at!
exp(−λbV )

(λfV )ft

ft!
exp(−λfV )

]
.

Since ω ∈ Ω̃ with the same N are indistinguishable,
i.e., invariant under permutation of target indices, they are
exchangeable and we assign a uniform prior on them. Hence,

P (ω|N ) ∝
∏T
t=1

[(
et−1
zt

)(
et−1−zt+at

dt

)(
µt

dt

)(
dt

at

)
(dt − at)!

]−1

.

(4)
Let Yt = {yjt : j = 1, . . . , nt} be all measurements at time

t and Y = {Yt : 1 ≤ t ≤ T} be all measurements from
t = 1 to t = T . Yt can be considered as a vector with random
ordering as indicated by the exchangeability of indices in (4).
Combining (3) and (4), it can be shown that the posterior of
ω ∈ Ω̃ becomes:

P (ω|Y ) ∝ P (Y |ω)P (ω)
∝ P (Y |ω)
×
∏T
t=1

1
µt!
pzt

z (1− pz)ctpdt

d (1− pd)gt(λbV )at(λfV )ft ,
(5)

where P (Y |ω) is the likelihood of observations Y given ω ∈
Ω̃.

It is important to notice that P (Y |ω) = 0 if µ(ω) 6= n(Y ),
where n(Y ) = [n1(Y ), . . . , nT (Y )]T denotes the number of
measurements at each time in Y . Hence, we can restrict our
attention to those ω ∈ Ω̃ with µ(ω) = n(Y ). This crucial
observation makes the numerous computations based on (5)
practical. The set of all possible associations is now defined
as Ω := Ωn(Y ) = {ω ∈ Ω̃ : µ(ω) = n(Y )} and Ω is used
instead of Ω̃ throughout this paper. Thus, it is convenient to
view Ω as a collection of partitions of Y . An example of one
such partition is shown in Figure 1.

The posterior (5) can be further simplified as

P (ω|Y ) ∝ P (Y |ω)
×
∏T
t=1 p

zt
z (1− pz)ctpdt

d (1− pd)gt(λbV )at(λfV )ft ,
(6)

where the term
∏T
t=1 V

at+ft will be canceled out by the
matching initial state and false alarm densities in P (Y |ω).
The likelihood P (Y |ω) can be computed based on the chosen
dynamic and measurement models (for a solid example, see
[2]). The posterior P (ω|Y ) can be applied to both MAP and



(a) (b)

Fig. 1. (a) An example of observations Y (each circle represents an
observation and numbers represent observation times). (b) An example of
a partition ω of Y .

Bayes estimator approaches to solve the multi-target tracking
problem.

III. MARKOV CHAIN MONTE CARLO

Markov chain Monte Carlo (MCMC) plays a significant role
in many fields such as physics, statistics, economics, finance,
and engineering [11]–[13]. The MCMC method includes al-
gorithms such as Gibbs sampling [14] and the Metropolis-
Hastings algorithm [15], [16]. Beichl and Sullivan described
the Metropolis-Hastings algorithm as “the most successful and
influential of all the members of ... the Monte Carlo Method”
[12].

MCMC is a general method to generate samples from a
distribution π on a space Ω by constructing a Markov chain
M with states ω ∈ Ω and stationary distribution π(ω). We
now describe an MCMC algorithm known as the Metropolis-
Hastings algorithm. If M is at state ω ∈ Ω, ω′ ∈ Ω is
proposed following the proposal distribution q(ω, ω′). The
move is accepted with an acceptance probability A(ω, ω′)
where

A(ω, ω′) = min
(

1,
π(ω′)q(ω′, ω)
π(ω)q(ω, ω′)

)
, (7)

otherwise the sampler stays at ω. With this construction, the
detailed balance condition is satisfied, i.e., for all ω, ω′ ∈ Ω,

Q(ω, ω′) := π(ω)P (ω, ω′) = π(ω′)P (ω′, ω), (8)

where P (ω, ω′) = q(ω, ω′)A(ω, ω′) is the transition probabil-
ity from ω to ω′. Hence, M is a reversible Markov chain.

If M is also irreducible and aperiodic, then M converges
to its stationary distribution by the ergodic theorem [17].
Hence, for any bounded function f , the sample mean f̂ =
1
N

∑N
n=1 f(ω(n)) converges to Eπf(ω) as N → ∞, where

ω(n) is the state of M at the nth MCMC step and Eπf(ω)
is the expected value of f(ω) with respect to measure π.
Notice that (7) requires only the ability to compute the ratio
π(ω′)/π(ω), avoiding the need to normalize π, and this is why
MCMC, especially the Metropolis-Hastings algorithm, can be
applied to a wide range of applications.

IV. SINGLE-SCAN MCMCDA

The main result for single-scan MCMCDA is its theoretical
analysis. The data association problem is known to be NP-
hard [7], [18] and we do not expect to find efficient, exact
algorithms. MCMCDA is the first data association algorithm

with provable guaranteed error bounds, i.e., MCMCDA is a
fully polynomial randomized approximation scheme for JPDA
[4]. More specifically, for any ε > 0 and any 0 < η < 0.5, the
algorithm finds ε-good estimates with probability at least 1−η
in time complexity O(ε−2 log η−1N(N logN + log(ε−1))),
i.e., polynomial in number of measurements, where N is
the number of measurements. The precise meaning of ε-good
estimates and related theorems are given in [4].

The single-scan MCMCDA filter follows the same filtering
steps as the assumed-density single-scan Bayesian filter [4] or
JPDA [1], except the computation of association probabilities.
Since the filtering steps are well known, we only describe the
approximation method using MCMC.

Suppose that there are K targets and nt measurements at
time t (the number of targets are assumed to be fixed in
single-scan MCMCDA). We also assume that an estimated
likelihood P̂ k(yjt |y1:t−1) is available for each target k from
the previous filtering step. P̂ k(yjt |y1:t−1) is a probability
density of having observation yjt given y1:t−1, when yjt is a
measurement originated from target k. The goal is to estimate
P̂ (Xk

t |y1:t), where Xk
t is the state of k-th target at time t,

from P̂ k(yjt |y1:t−1) and Yt for all k.
Let ω be a feasible association between nt measurements

and K targets and we let Ω = {ω} be a set of all feasible
(joint) association events at time t. For each ω ∈ Ω, ω =
{(j, k)}, where (j, k) denotes the event that observation j is
associated with target k. An association event ω is feasible
when (i) for each (j, k) ∈ ω, yjt is validated for target k
(i.e., P̂ k(yjt |y1:t−1) ≥ δk for δk > 0); (ii) an observation
is associated with at most one target; and (iii) a target is
associated with at most one observation.

Let N ≤ nt be the number of validated observations. We
encode the feasible association events in a bipartite graph
G = (U, V,E), where U = {yjt : 1 ≤ j ≤ N} is a vertex
set of validated observations, V = {k : 1 ≤ k ≤ K} is a
vertex set of target indices, and E = {(u, v) : u ∈ U, v ∈
V, P̂ v(u|y1:t−1) ≥ δv}. An edge (u, v) ∈ E indicates that
observation u is validated for target v. A feasible association
event is a matching in G, i.e., a subset M ⊂ E such that no two
edges in M share a vertex. The set of all feasible association
events Ω can be represented as Ω = M0(G) ∪ · · · ∪MK(G),
where Mk(G) is the set of k-matchings in G.

We can compute the approximate distribution as [4]:

P̂ (Xk
t |y1:t) =

N∑
j=0

βjkP̂ (Xk
t |ωjk, y1:t), (9)

where ωjk denotes the event {ω ∈ Ω : (j, k) ∈ ω}, ω0k

denotes the event that no observation is associated with target
k, and βjk is an association probability, such that

βjk = P̂ (ωjk|y1:t) =
∑

ω:(j,k)∈ω

P̂ (ω|y1:t). (10)

P̂ (Xk
t |ωjk, y1:t) in (9) can be easily computed by consider-

ing it as a single-target estimation problem with a single ob-



Algorithm 1 Single-scan-MCMCDA
1: INPUT: G = (U, V,E), nmc, nbi, θ
2: OUTPUT: {β̂jk}
3: β̂jk = 0 for all j and k
4: choose ω(0) randomly from Ω
5: for n = 1 to nmc do
6: ω(n) = Single-scan-MCMCDA.single-

step(G,ω(n−1), θ) (see Algorithm 2)
7: if n > nbi then
8: for each (yj , k) ∈ ω(n) do
9: β̂jk = β̂jk + 1/(nmc − nbi)

10: end for
11: end if
12: end for

servation. On the other hand, the computation of βjk requires
a summation over exponentially many association events.

Based on the parametric false alarm model described in
Section II-A, for each ω ∈ Ω, the prior P (ω) can be written
as

P (ω) ∝ (λfV )N−|ω|p|ω|d (1− pd)K−|ω|. (11)

Then, the estimated posterior of ω ∈ Ω can be written as

P̂ (ω|y1:t) =
1
Z
λ
N−|ω|
f p

|ω|
d (1− pd)K−|ω|

∏
(u,v)∈ω

P̂ v(u|y1:t−1)

(12)
where Z is a normalizing constant.

The MCMC data association (MCMCDA) algorithm is
an MCMC algorithm whose state space is the set of all
feasible association events Ω and whose stationary dis-
tribution is the posterior P̂ (ω|y1:t) (12). The single-scan
MCMCDA algorithm is shown in Algorithm 1, where θ =
{{P̂ v(u|y1:t−1)}, λf, pd,K,N}, along with its MCMC step
described in Algorithm 2. The inputs to Algorithm 1 are
the graph G, the number of samples nmc, the number of
burn-in samples nbi, and θ. The input θ contains likelihoods
{P̂ v(u|y1:t−1)} and model parameters λf, pd,K, and N . Al-
gorithm 1 computes the approximate association probabilities
{β̂jk}, which can be used in (9) to compute the approx-
imate posterior distribution P̂ (Xk

t |y1:t). Since we have a
uniform proposal distribution, A(ω, ω′) = min

(
1, π(ω′)

π(ω)

)
,

where π(ω) = P̂ (ω|y1:t) from (12).

V. MULTI-SCAN MCMCDA

The single-scan MCMCDA algorithm described in Sec-
tion IV assumes a fixed, known number of targets. This
assumption leads to a simple filtering scheme, but in most
situations of interest the number of targets is unknown and
changes over time. Furthermore, a single-scan algorithm that
makes approximations (such as measurement validation and
independence) to avoid complexity may end up being un-
able to maintain tracks over long periods because it cannot
revisit previous, possibly incorrect, association decisions in
the light of new evidence. For these reasons, methods for

Algorithm 2 Single-scan-MCMCDA.single-step
1: INPUT: G = (U, V,E), ω, θ
2: OUTPUT: ω
3: sample Z from Unif[0, 1]
4: if Z < 1

2 then
5: ω′ = ω
6: else
7: choose e = (u, v) ∈ E uniformly at random
8: if e ∈ ω then
9: ω′ = ω − e (deletion move)

10: else if both u and v are unmatched in ω then
11: ω′ = ω + e (addition move)
12: else if exactly one of u and v is matched in ω and e′

is the matching edge then
13: ω′ = ω + e− e′ (switch move)
14: else
15: ω′ = ω
16: end if
17: end if
18: ω = ω′ with probability A(ω, ω′)

solving the general multi-target tracking problem described
in Section II often adopt a multi-scan design, maintaining
state in the form of both the posterior approximation and
the observation history. This section describes a multi-scan
MCMCDA algorithm that can handle unknown numbers of
targets. The solution space Ω for this algorithm contains
association histories over multiple time steps, as well as
considering all possible numbers of targets at each step, and
is therefore much larger than the solution space considered by
a single-scan algorithm. The multi-scan MCMCDA algorithm
features efficient mechanisms to search over this large solution
space in addition to birth and death moves to add or remove
tracks. The multi-scan MCMCDA algorithm and its extension
to an online version are presented in this section along with
simulation and experimental results.

A. Multi-Scan MCMCDA Algorithm

The multi-scan MCMCDA algorithm is described in Al-
gorithm 3. It is an MCMC algorithm whose state space is Ω
described in Section II and whose stationary distribution is the
posterior (6). The proposal distribution for MCMCDA consists
of five types of moves (a total of eight moves). They are

1) birth/death move pair;
2) split/merge move pair;
3) extension/reduction move pair;
4) track update move; and
5) track switch move.
The multi-scan MCMCDA moves are graphically illustrated

in Figure 2. We index each move by an integer such that m = 1
for a birth move, m = 2 for a death move and so on. The move
m is chosen randomly from the distribution ξK(m) where K
is the number of tracks of the current partition ω. When there
is no track, we can only propose a birth move, so we set



Algorithm 3 Multi-scan-MCMCDA
INPUT: Y, nmc, ωinit
OUTPUT: ω̂
ω = ωinit; ω̂ = ωinit
for n = 1 to nmc do

propose ω′ based on ω (see text)
sample U from Unif[0, 1]
ω = ω′ if U < A(ω, ω′)
ω̂ = ω if p(ω|Y )/p(ω̂|Y ) > 1

end for

ξ0(m = 1) = 1 and 0 for all other moves. When there is only
a single target, we cannot propose a merge or track switch
move, so ξ1(m = 4) = ξ1(m = 8) = 0. For other values of
K and m, we assume ξK(m) > 0. The inputs for MCMCDA
are the set of all measurements Y , the number of samples nmc,
and the initial state ωinit. At each step of the algorithm, ω is the
current state of the Markov chain. The acceptance probability
A(ω, ω′) is defined in (7) where π(ω) = P (ω|Y ) from (6). The
output ω̂ approximates the MAP estimate arg maxP (ω|Y ).
Given ω̂, The states of the targets can be easily computed
by any filtering algorithm since the associations between the
targets and the measurements are known. Algorithm 3 can be
also used to find the Bayesian estimates of the target states
(see [4] for more detail).

An MCMC algorithm can be specialized and made more
efficient by incorporating the domain specific knowledge. In
multi-target tracking, we can make two assumptions: (1) the
maximum directional speed of any target in R is less than v̄;
and (2) the number of consecutive missing measurements of
any track is less than d̄. The first assumption is reasonable in a
surveillance scenario since, in many cases, the maximum speed
of a vehicle is generally known based on the vehicle type and
terrain conditions. The second assumption is a user-defined
parameter. Let p̄dt(s) = 1 − (1 − pd)s be the probability that
a target is observed at least once out of s measurement times.
Then, for given p̄dt, we set d̄ = dlog(1− p̄dt)/ log(1− pd)e to
detect a track with probability at least p̄dt. For example, given
pd = 0.7 and p̄dt = 0.99, a track is detected with probability
larger than 0.99 for d̄ ≥ 4. We will now assume that these
two new conditions are added to the definition of Ω so each
element ω ∈ Ω satisfies these two additional assumptions.

We use a data structure, called a neighborhood tree of
measurements, which groups temporally separated measure-
ments based on distances, to propose a new partition ω′ in
Algorithm 3. A neighborhood tree of measurements is defined
as

Ld(y
j
t ) = {ykt+d ∈ yt+d : ‖yjt − ykt+d‖ ≤ d · v̄}

for d = 1, . . . , d̄, j = 1, . . . , nt and t = 1, . . . , T − 1.
Here ‖ · ‖ is the Euclidean distance. The parameter d allows
missing measurements. The use of this neighborhood tree
makes the algorithm more scalable since distant measurements
will be considered separately and makes the computations of
the proposal distribution easier. It is similar to the clustering

Fig. 2. Graphical illustration of MCMCDA moves (associations are indicated
by dotted lines and hollow circles are false alarms). Each move proposes a
new joint association event ω′ which is a modification of the current joint
association event ω. The birth move proposes ω′ by forming a new track
from the set of false alarms ((a) → (b)). The death move proposes ω′ by
combining one of the existing tracks into the set of false alarms ((b)→ (a)).
The split move splits a track from ω into two tracks ((c) → (d)) while the
merge move combines two tracks in ω into a single track ((d) → (c)). The
extension move extends an existing track in ω ((e)→ (f)) and the reduction
move reduces an existing track in ω ((f) → (e)). The track update move
chooses a track in ω and assigns different measurements from the set of false
alarms ((g) ↔ (h)). The track switch move chooses two track from ω and
switches some measurement-to-track associations ((i)↔ (j)).

technique used in MHT but Ld is fixed for a given set of
measurements.

We now describe each move of the sampler in detail. First,
let ζ(d) be a distribution of a random variable d taking values
from {1, 2, . . . , d̄}. We assume the current state of the chain is
ω = ω0 ∪ ω1 ∈ Ω, where ω0 = {τ0} and ω1 = {τ1, . . . , τK}.
The proposed partition is denoted by ω′ = ω′0∪ω′1 ∈ Ω. Note
the abuse of notation below with indexing of time, i.e., when
we say τ(ti), ti means the time at which a target corresponding
to the track τ is observed i times.
Birth and Death Moves (Figure 2, (a) ↔ (b)): For a birth
move, we increase the number of tracks from K to K ′ = K+1
and select t1 uniformly at random (u.a.r.) from {1, . . . , T −1}
as an appearance time of a new track. Let τK′ be the track of
this new target. Then we choose d1 from the distribution ζ. Let
L1
d1

= {yjt1 : Ld1(yjt1) 6= ∅, yjt1 6∈ τk(t1), j = 1, . . . , nt1 , k =
1, . . . ,K}. L1

d1
is a set of measurements at t1 such that, for

any y ∈ L1
d1

, y does not belong to other tracks and y has
at least one descendant in Ld1(y). We choose τK′(t1) u.a.r.
from L1

d1
. If L1

d1
is empty, the move is rejected since the move



is not reversible. Once the initial measurement is chosen, we
then choose the subsequent measurements for the track τK′ .
For i = 2, 3, . . ., we choose di from ζ and choose τK′(ti)
u.a.r. from Ldi(τK′(ti−1)) \ {τk(ti−1 + di) : k = 1, . . . ,K}
unless this set is empty. But, for i = 3, 4, . . ., the process of
adding measurements to τK′ terminates with probability pz. If
|τK′ | ≤ 1, the move is rejected. We then propose this modified
partition where ω′1 = ω1 ∪ {τK′} and ω′0 = {τ0 \ τK′}. For
a death move, we simply choose k u.a.r. from {1, . . . ,K}
and delete the k-th track and propose a new partition where
ω′1 = ω1 \ {τk} and ω′0 = {τ0 ∪ τk}.
Split and Merge Moves (Figure 2, (c) ↔ (d)): For a split
move, we select τs(tr) u.a.r. from {τk(ti) : |τk| ≥ 4, i =
2, . . . , |τk|−2, k = 1, . . . ,K}. Then we split the track τs into
τs1 and τs2 such that τs1 = {τs(ti) : i = 1, . . . , r} and τs2 =
{τs(ti) : i = r + 1, . . . , |τs|}. The modified track partition
becomes ω′1 = (ω1 \ {τs}) ∪ {τs1} ∪ {τs2} and ω′0 = ω0.
For a merge move, we consider the following set of possible
merge move pairs:

Msp = {(τk1(tf ), τk2(t1)) : τk2(t1) ∈ Lt1−tf (τk1(tf )),
f = |τk1 | for k1 6= k2, 1 ≤ k1, k2 ≤ K}.

We select a pair (τs1(tf ), τs2(t1)) u.a.r. from M . The tracks
are combined into a single track τs = τs1 ∪ τs2 . Then we
propose a new partition where ω′1 = (ω1 \ ({τs1}∪ {τs2}))∪
{τs} and ω′0 = ω0.
Extension and Reduction Moves (Figure 2, (e) ↔ (f)): In
a track extension move, we select a track τ u.a.r. from K
available tracks in ω. We reassign measurements for τ after
the disappearance time t|τ | as done in the track birth move.
For a track reduction move, we select a track τ u.a.r. from
K available tracks in ω and r u.a.r. from {2, . . . , |τ | − 1}.
We shorten the track τ to {τ(t1), . . . , τ(tr)} by removing the
measurements assigned to τ after the time tr+1.
Track Update Move (Figure 2 (g)↔ (h)): In a track update
move, we select a track τ u.a.r. from K available tracks in
ω. Then we pick r u.a.r. from {1, 2, . . . , |τ |} and reassign
measurements for τ after the time tr as done in the track
birth move.
Track Switch Move (Figure 2, (i)↔ (j)): For a track switch
move, we select a pair of measurements (τk1(tp), τk2(tq))
from two different tracks such that, τk1(tp+1) ∈ Ld(τk2(tq))
and τk2(tq+1) ∈ Ld′(τk1(tp)), where d = tp+1 − tq , d′ =
tq+1 − tp and 0 < d, d′ ≤ d̄. Then we let

τk1 = {τk1(t1), . . . , τk1(tp), τk2(tq+1), . . . , τk2(t|τk2 |)}
τk2 = {τk2(t1), . . . , τk2(tq), τk1(tp+1), . . . , τk1(t|τk1 |)}.

B. Online MCMCDA

While the computational complexity of the multi-scan
MCMCDA algorithm is lighter than MHT [4], it grows as
more measurements are collected. Since recent measurements
are more relevant to the current states, good estimates of the
current states can still be found from recent measurements.
Based on this idea, we propose an online multi-scan MCM-
CDA algorithm whose estimates are based on measurements
from a window of time [tcurr − twin + 1, . . . , tcurr], where tcurr

is the current time and twin is the size of a window. Hence,
at all times, only a finite number of measurements are kept
by the algorithm. This online implementation of multi-scan
MCMCDA is suboptimal because it considers only a subset
of past measurements. At each time step, we use the previous
estimate to initialize multi-scan MCMCDA and run multi-
scan MCMCDA on the measurements belonging to the current
window. The measurements belonging to the current window
are Yw = {yj(t) : 1 ≤ j ≤ n(t), tcurr − twin + 1 ≤ t ≤ tcurr}.
At time tcurr + 1, the measurements at time tcurr − twin + 1
are removed from Yw and a new set of measurements is
appended to Yw. Any delayed measurements are inserted into
the appropriate slots. Then, we initialized the Markov chain
with the previously estimated tracks and executes Algorithm 3
on Yw.

C. Simulation Results

An example of tracking multiple targets in a densely clut-
tered environment is used to demonstrate online-version of
multi-scane MCMCDA. For more extensive comparison of
MCMCDA against MHT and multi-scan NNF, see [4].

For this example, the surveillance duration is T = 100 and
the scenario is generated according to the model for multi-
target tracking described in Section II-A. The surveillance
region is R = [0, 100] × [0, 100] and the model parameters
are: λbV = 5, pz = 1/20, pd = 0.7, and λfV = 30. There are
a total of 380 targets. The following linear model is used:

xkt+1 = Axkt +Gwkt yjt = Cxkt + vjt (13)

where

A =

 1 0 Ts 0
0 1 0 Ts
0 0 1 0
0 0 0 1


G =

 T 2
s /2 0
0 T 2

s /2
Ts 0
0 Ts

 C =

 1 0
0 1
0 0
0 0


T

,

and Ts is the sampling period, wkt is a zero-mean Gaus-
sian process with covariance Q = diag(0.031, 0.031), and
vjt is a zero-mean Gaussian process with covariance R =
diag(0.031, 0.031). The size of the sliding window is twin = 14
for the online MCMCDA algorithm while d̄ = 5 and v̄ = 3
unit lengths per unit time.

The C++ implementation of MHT [19] is used for compar-
ison, which implements pruning, gating, clustering, N -scan-
back logic and k-best hypotheses. The parameters for MHT
are fine-tuned so that it gives similar performance to that of
MCMCDA when there are 10 targets: the maximum number
of hypotheses in a group is 1,000, the maximum track tree
depth is 5, and the maximum Mahalanobis distance is 11.8.
All simulations are run on a PC with a 2.6-GHz Intel processor.

For this example, MHT took 6,995 seconds while online
MCMCDA took only 343 seconds, i.e., a 20-fold reduction in
computation time. On the F1 measure, MHT scored 0.85 and
MCMCDA scored 0.91. The F1 measure is a harmonic mean
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Fig. 3. Actual trajectories of targets at different time intervals and tracks
estimated by MHT and MCMCDA. The running time of MCMCDA for this
example was 343 seconds while it took 6,995 seconds for MHT to complete.
MCMCDA scored 0.91 in the F1 measure and MHT scored 0.85. (a) Actual
trajectories of targets from t = 10 to t = 40. (b) Tracks estimated by MHT
from t = 10 to t = 40. (c) Tracks estimated by MCMCDA from t = 10
to t = 40. (d) Actual trajectories of targets from t = 40 to t = 70. (e)
Tracks estimated by MHT from t = 40 to t = 70. (f) Tracks estimated by
MCMCDA from t = 40 to t = 70. (g) Actual trajectories of targets from
t = 70 to t = 100. (h) Tracks estimated by MHT from t = 70 to t = 100.
(i) Tracks estimated by MHT from t = 70 to t = 100.

between recall and precision with an equal weight. The higher
the value of the F1 measure, the more effective the algorithm
is. In addition, MHT found 494 targets but MCMCDA detected
335 targets which is close to the actual number of 380 targets.
The tracks estimated by MHT and MCMCDA are shown
in Figure 3. For easy comparison, Figure 3 also shows the
actual trajectories of targets. In summary, this example shows
that MCMCDA is very effective in a dense environment
and achieves superior performance with a fraction of the
computation time required by MHT.

D. Experiments

Multi-target tracking and a pursuit evasion game using
MCMCDA were demonstrated at the Defense Advanced Re-
search Projects Agency (DARPA) Network Embedded Sys-
tems Technology (NEST) final experiment on August 30,
2005. In this section, we describe experimental results reported
in [8].

The experiment was performed on a large-scale, long-term,
outdoor sensor network testbed deployed on a short grass field
at U.C. Berkeley’s Richmond Field Station (see Figure 4). A
total of 557 sensor nodes were deployed and 144 of these
nodes were allotted for the tracking and PEG experiments.
Each sensor node was elevated using a camera tripod to pre-

(a) (b)

Fig. 4. Hardware for the sensor nodes. (a) Trio sensor node on a tripod.
On top is the microphone, buzzer, solar panel, and user and reset buttons. On
the sides are the windows for the passive infrared sensors. (b) A live picture
from the 2 target PEG experiment. The targets are circled.

vent the passive infrared (PIR) sensors from being obstructed
by grass and uneven terrain (see Figure 4(a)). The locations of
the nodes were measured during deployment using differential
GPS and stored in a table at the base station for reference.
However, in the experiments the system assumed the nodes
were placed exactly on a 5 meter spacing grid to highlight the
robustness of the system against localization error. For more
detail about the experiment setup and description about the
system used in the experiments, see [8].

The online multi-scan MCMCDA algorithm was demon-
strated on one, two, and three human targets, with targets
entering the field at different times. In all three experiments,
the tracking algorithm correctly estimated the number of
targets and produced correct tracks. Furthermore, the algorithm
correctly disambiguated crossing targets in the two and three
target experiments without classification labels on the targets,
using the dynamic models and target trajectories before cross-
ing to compute the tracks.

Figure 5 shows the multi-target tracking results with three
targets walking through the field. The three targets entered and
exited the field around time 10 and 80, respectively. During the
experiment, the algorithm correctly rejected false alarms and
compensated for missing detections. There were many false
alarms during the span of the experiments. Though not shown
in the figures, the algorithm dynamically corrected previous
track hypotheses as it received more sensor readings.

In another demonstration, two simulated pursuers were
dispatched to chase two crossing human targets. The pursuer-
to-target assignment and the robust minimum time-to-capture
control law were computed in real-time, in tandem with
the real-time tracking of the targets. The simulated pursuers
captured the human targets, as shown in Figure 6. In particular,
note that the MTT module is able to correctly disambiguate the
presence of two targets (right panel of Figure 6(a)) using past
measurements, despite the fact that the MSF module reports
the detection of a single target (upper left panel of Figure 6(a)).
A live picture of this experiment is shown on the right of
Figure 4.



Fig. 5. Estimated tracks of targets at time 70 from the experiment with three
people walking in the field. (upper left) Detection panel. Sensors are marked
by small dots and detections are shown in large disks. (lower left) Fusion
panel shows the fused likelihood. (right) Estimated Tracks and Pursuer-to-
evader Assignment panel shows the tracks estimated by the MTT module,
estimated evader positions (stars) and pursuer positions (squares).

(a)

(b)

Fig. 6. Estimated tracks of evaders and pursuer positions from the pursuit
evasion game experiment. (a) Before crossing. (b) After crossing.

VI. CONCLUSIONS

In this paper, we have described the Bayesian formulation
of data association and Markov chain Monte Carlo data
association (MCMCDA) for solving data association problems
arising in multi-target tracking in a cluttered environment. In
both simulations and experiments, MCMCDA is shown to be
computationally efficient approach to solve a large-scale data
association problem. We plan to apply MCMCDA to more
general data association problems by extending the state space
of targets to include information such as features, texture, and
shape.
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